Project Euler Problem 39

Problem 39

If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.

{20,48,52}, {24,45,51}, {30,40,50}

For which value of p ≤ 1000, is the number of solutions maximised?


若三边长{a,b,c}均为整数的直角三角形周长为p,当p = 120时,恰好存在三个不同的解:{20,48,52}, {24,45,51}, {30,40,50}

在所有的p ≤ 1000中,p取何值时有解的数目最多?

m = 0
mp = 0
for p in range(1,1001):
    count = 0
    for a in range(1,int(p/2)+1):
        for b in range(1,a+1):
            c = p - a - b
            if a**2 + b**2 == c**2:
                count += 1
    if m < count:
        m = count
        mp = p
print(m,mp)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值