题目
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:
你能不将整数转为字符串来解决这个问题吗?
解法一
沿用整数反转的老办法,先将整数拆分成数组,然后首尾依次进行比较即可。
class Solution {
public:
bool isPalindrome(int x) {
if (x < 0)
return false;
vector<int> nums;
int len = 0;
while (x) {
nums.push_back(x % 10);
++len;
x /= 10;
}
bool flag = true;
for (int i = 0; i < len / 2; i++) {
if (nums[i] != nums[len - 1 - i]) {
flag = false;
break;
}
}
return flag;
}
};
解法二
既然回文数是左右对称的,那么可否只拆分一半?
class Solution {
public:
bool isPalindrome(int x) {
// 特殊情况:
// 当 x < 0 时,x 不是回文数。
// 同样地,如果数字的最后一位是 0,为了使该数字为回文,
// 则其第一位数字也应该是 0
// 只有 0 满足这一属性
if (x < 0 || (x % 10 == 0 && x / 10 != 0))
return false;
int rev = 0;
while (rev < x) {
rev = rev * 10 + x % 10;
x /= 10;
}
// 当数字长度为奇数时,我们可以通过 rev/10 去除处于中位的数字。
// 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,rev = 123,
// 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
return rev == x || x == rev / 10;
}
};