A - Cover it!

原题链接:http://codeforces.com/problemset/problem/1176/E

You are given an undirected unweighted connected graph consisting of nn vertices and mm edges. It is guaranteed that there are no self-loops or multiple edges in the given graph.

Your task is to choose at most ⌊n2⌋⌊n2⌋ vertices in this graph so each unchosen vertex is adjacent (in other words, connected by an edge) to at least one of chosen vertices.

It is guaranteed that the answer exists. If there are multiple answers, you can print any.

You will be given multiple independent queries to answer.

Input

The first line contains a single integer tt (1≤t≤2⋅1051≤t≤2⋅105) — the number of queries.

Then tt queries follow.

The first line of each query contains two integers nn and mm (2≤n≤2⋅1052≤n≤2⋅105, n−1≤m≤min(2⋅105,n(n−1)2)n−1≤m≤min(2⋅105,n(n−1)2)) — the number of vertices and the number of edges, respectively.

The following mm lines denote edges: edge ii is represented by a pair of integers vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi), which are the indices of vertices connected by the edge.

There are no self-loops or multiple edges in the given graph, i. e. for each pair (vi,uivi,ui) there are no other pairs (vi,uivi,ui) or (ui,viui,vi) in the list of edges, and for each pair (vi,uivi,ui) the condition vi≠uivi≠ui is satisfied. It is guaranteed that the given graph is connected.

It is guaranteed that ∑m≤2⋅105∑m≤2⋅105 over all queries.

Output

For each query print two lines.

In the first line print kk (1≤⌊n2⌋1≤⌊n2⌋) — the number of chosen vertices.

In the second line print kk distinct integers c1,c2,…,ckc1,c2,…,ck in any order, where cici is the index of the ii-th chosen vertex.

It is guaranteed that the answer exists. If there are multiple answers, you can print any.

Example

Input

2
4 6
1 2
1 3
1 4
2 3
2 4
3 4
6 8
2 5
5 4
4 3
4 1
1 3
2 3
2 6
5 6

Output

2
1 3
3
4 3 6

题意:给你一个图要你选边(边数最多为n/2向下取整)但有个要求就是如果选了a边,那么必须要有一条没有选的b边。

思路:这是一个经典的染色问题,我们把选的边用1标记,没选的边用0标记即可。作一次图的遍历相邻的边用不同的颜色染色。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<vector>
#define LL long long

using namespace std;
const int maxn=2e5+100;

struct node
{
    int to,Next;
};

node Edge[2*maxn];
int Head[maxn];
int tot[maxn];
int cnt;
int gg0,gg1;
int vis[maxn];
int n,m;
void add(int u,int v)
{
    Edge[++cnt].to=v;
    Edge[cnt].Next=Head[u];
    Head[u]=cnt;
    return ;
}
void dfs(int x,int jb)
{
    vis[x]=jb;

    for(int i=Head[x];i!=-1;i=Edge[i].Next)
    {
        int v=Edge[i].to;
        if(vis[v]==-1)
            dfs(v,jb^1);
    }
    return ;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<=n;i++)
        {
            Head[i]=-1;
        }
        for(int i=1;i<=n;i++)
        {
            vis[i]=-1;
        }
        cnt=0;
        for(int i=1;i<=m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        gg1=0;
        gg0=0;
        dfs(1,0);
        for(int i=1;i<=n;i++)
        {
            if(vis[i])
            {
                gg1++;
            }
            else
            {
                gg0++;
            }
        }
        if(gg0>gg1)
        {
            printf("%d\n",gg1);
            for(int i=1;i<=n;i++)
            {
                if(vis[i]==1)
                {
                    printf("%d ",i);
                }
            }
            printf("\n");
        }
        else
        {
            printf("%d\n",gg0);
            for(int i=1;i<=n;i++)
            {
                if(vis[i]==0)
                {
                    printf("%d ",i);
                }
            }
            printf("\n");
        }
    }
    return 0;
}

最后:这个题也可以BFS分层遍历和染色的想法类似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值