编译器缺陷辅助定位

编译器bug定位的难题

基于测试数据生成的编译器缺陷辅助定位技术分为基于频谱的缺陷辅助定位(SBFL),基于切片的缺陷辅助定位,基于变异的缺陷辅助定位,但无法用于编译器缺陷辅助定位。面对编译器缺陷辅助定位有三个挑战:编译器庞大致使在编译器上执行动态和静态分析非常耗时;编译器复杂则通过测试的测试代码和失败的测试代码的执行路径往往差别非常显著。

DiWi定位技术

作者提出编译器缺陷辅助定位技术DiWi,通过测试数据的生成来驱动编译器缺陷辅助定位。主要贡献是寻找证人测试代码(从可疑文件集合中消除无辜文件嫌疑的通过测试代码),基于它和给定的失败的测试代码,开发人员根据执行路径差异可以有效识别缺陷文件。

技术描述

在DiWi中,首先生成一组有效证人测试代码,将其与给定的失败测试代码进行覆盖信息的比较来辅助定义缺陷。
定义准则:
一:每一个证人测试代码应该与给定的失败测试代码有相似的编译器执行路径。
二:这一组证人测试代码应该在编译器的执行路径上具有足够多样性。

证人化变异

证人化变异为了满足第一个准则。证人化变异包括变量变异、操作变异和常量变异。变量变异指的是每一个代码变量都可以被改变成另一个兼容的变量或者类型;操作变异指的是每一个代码操作符都可以被变成其他可兼容的操作符;常量变异指的是每一个代码常量都可以被变成其他常量值。证人化变异如图1所示,其中变量(记洞v)、操作(记为洞o)和常量(记为洞~c),非终结符a、b和S代表算数表达式、布尔表达式和代码语句。终结符opa、opl、opr和opu表示了算数操作符、逻辑操作符、关系操作符和一元操作符。终结符x和n表示代码变量与常量。虽然这里使用WHILE风格语言来进行介绍,但是该技术可以应用到其他语言上,如C。
图1
图2

启发式证人测试代码生成

由于巨大的搜索空间和有限的计算资源,通过变异产生所有的证人测试代码,然后再从中选择一小组有效的证人测试代码是不可取的。基于该启示,DiWi提出一种启发式测试代码生成策略。在这里,DiWi使用覆盖距离来度量测试代码之间的多样性。距离公式如图3所示。
图3

基于聚合机制的编译器可疑文件排序

在生成了一组证人测试代码之后,DiWi通过分析这组证人测试代码和给定的失败测试代码来辅助定位编译器缺陷。通过借鉴基于频谱的缺陷定位思想,DiWi为每一个在可疑文件中的语句计算可疑度值。在这里,DiWi采用一种最广泛使用的SBFL公式Ochiai来计算每一个可疑语句的可疑度值。该计算如图所示。

图4
其中,e fs和n fs代表执行和没有执行语句s的失败的测试代码的数量,eps代表执行语句s的通过测试的测试代码的数量。在本章问题中,这里只有一个给定的失败测试代码并且仅仅考虑被失败测试代码覆盖的语句,因此,e fs为1和n fs为0。然后计算一个文件的可疑度值。
说明:该文章读取陈俊洁博士论文-数据驱动的编译器测试与调试若干技术研究编写。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值