自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 收藏
  • 关注

原创 机器学习多分类神经网络实践

v = np.ones((1, m_train)).reshape((1, -1)) # 1 向量。Z_2_test = np.dot(W_2.T, A_1_test) + b_2 # 广播操作。Z_1_test = np.dot(W_1.T, X_test) + b_1 # 广播操作。U = np.ones((classes, classes)) # 1矩阵。learning_rate = 0.1 # 学习率。m_train = 200 # 训练样本数量。# 测试数据集上的预测。

2025-05-26 11:48:36 506

原创 机器学习多分类逻辑回归和二分类神经网络实践

代码# 2-17 实现多分类逻辑回归# 参数设置iterations = 5400 # 迭代次数learning_rate = 0.1 # 学习率m_train = 200 # 训练样本数量# 整数索引值转one-hot向量# 读入轮椅数据m_all = np.shape(data)[0] # 样本数量d = np.shape(data)[1] - 1 # 输入特征维数m_test = m_all - m_train # 测试样本的数量。

2025-05-26 11:45:02 996

原创 机器学习k近邻,高斯朴素贝叶斯分类器

2-14 k近邻分类from scipy import stats # 导入stats# 参数设置knn_k_max = 20 # k近邻中的最大k值folds = 4 # k份交叉验证的份数k# 读入轮椅数据集m_all = np.shape(data)[0] # 样本总数d = np.shape(data)[1] - 1 # 输入特征的维数classes = np.amax(data[:, d]) # 类别数量。

2025-05-26 11:20:21 900

原创 机器学习课堂7用scikit-learn库训练SVM模型

std = np.std(data[0:m_train, 0:d], axis=0, ddof=1) # 计算训练样本输入特诊的标准差。std = np.std(data[0:m_train, 0:d], axis=0, ddof=1) # 计算训练样本输入特诊的标准差。X_train = data[0:m_train, 0:d] # m_train*d维。X_test = data[m_train:, 0:d] # m_test*d维。

2025-04-08 17:45:49 954 1

原创 机器学习课堂6交叉熵代价函数的逻辑回归模型

std=np.std(data[0:m_train, 0:d], axis=0, ddof=1) # 计算训练样本输入特诊的标准差。mean=np.mean(data[0:m_train, 0:d], axis=0) # 计算训练样本输入特征的均值。Y_train = data[0:m_train, d].reshape((1, -1)) # 训练集目标值。Y_test = data[m_train:, d].reshape((1, -1)) # 测试集目标值。

2025-04-08 17:38:51 806

原创 机器学习课堂5二分类与逻辑回归

代码# 2-8线性回归进行二分类# 参数设置iterations = 20 # 迭代次数learning_rate = 0.1 # 学习率dataset = 1 # 选择训练数据集threshold = 0.5 # 判决门限# 训练数据集if dataset == 1: # 数据集1(1, -1))elif dataset == 2: # 数据集2m_train = x_train.size # 训练样本数量# 标准化输入特征# 初始化# 梯度下降法。

2025-03-30 16:24:37 650

原创 机器学习课堂4线性回归模型+特征缩放

代码:# 2-2线性回归模型# 参数设置iterations=3000 # 迭代次数learning_rate=0.0001 # 学习率m_train=3000 # 训练样本的数量flag_plot_lines=False # 是否画出拟合直线plot_feature=1 # 使用哪个输入特征画拟合直线plot_skip=4 # 每间隔几条拟合直线画出一条拟合直线# 读入气温数据集m_all = np.shape(data)[0] # 样本总数。

2025-03-20 15:53:44 702

原创 机器学习课堂3梯度下降法

每次迭代中都使用了训练数据集中的所有训练样本学习率(Learning Rate)是深度学习中的一个关键超参数,它决定了模型在训练过程中权重更新的速度。学习率的大小直接影响到模型的学习进度,过大可能导致损失值爆炸或振荡,过小则可能导致过拟合或收敛速度慢。因此,合理设置学习率对于模型训练的成功至关重要。代码计算权重w和偏差b# 批梯度# 参数设置iterations = 20 # 迭代次数learning_rate = 0.001 # 学习率。

2025-03-12 15:08:31 636

原创 机器学习课堂2线性回归

n = len(x) # 数据点数量s4=s0**2s5=4*s2print(b)print(w)

2025-03-05 15:22:36 320

原创 机器学习课堂1

一、1.1n=len(a)s=0print(s)1.2print(s)二、NumPy库函数np.array()是 NumPy 库中用于创建数组的核心函数。

2025-02-24 21:27:47 709

原创 Python tkinter创建小窗口

print("你点了一下按钮")root.title("***") #引号中可以输入窗口命名root.iconbitmap("bitbug_favicon.ico") # ico图标(自行下载合适尺寸的ico图标)root.geometry("1200x600") # 窗体长度root.config(bg="light blue") # 背景颜色mainloop() #mainloop方法,可以让窗口循环显示,否则运行时窗口一闪就没了运行结果展示。

2023-12-26 23:27:24 2216 1

原创 异常处理案例

三、 默认异常处理语句 主动触发异常 finally扫尾工作处理方案。age = int(input("请输入你的年龄:"))print('检查输入字符串是否为可转换为整数。# NameError #使用一个还未被赋予对象的变量。# finally扫尾工作处理方案。y = input('请输入另一个数:')print('自定义异常处理类')print('除以 0 错误。print('你是未成年人。x = input('请输入一个数:')print('程序执行完毕。print('没有错误。

2023-12-20 00:02:06 448 1

原创 爬虫代码复制到Python运行,保存到MySQL

host:地址 potr:端口 user:用户名 password:密码 db:数据库名 charset:编码。cursor.execute(sql) # 执行语句。1.搜索一段爬虫代码复制到python中加入一段代码。cursor = db.cursor() #创建游标。6、运行代码,表格自动填写。将后面括号里改为对应字段。2、代码最后加入以下代码。需要输入自己的端口和密码。

2023-12-06 00:41:25 507 1

原创 Navicat创建触发器删除、更新、插入

if new.course_value ='良好' THEN SET new.course_value='优秀';before:(insert、update)可以对new进行修改,after:不能对new进行修改,两者都不能修改old数据。选择一张表~~设计表~~触发器~~新添触发器。对于INSERT语句, 只有NEW是合法的;添加完触发器,即使输入的是良好也自动变成优秀。对于DELETE语句,只有OLD才合法;注意添加的触发器名字不能相同。

2023-11-19 14:06:19 2548 1

原创 创建成绩信息表视图

MySQL作业

2023-11-11 14:37:08 183 1

原创 MySQL数据库基础与实践4-32例题

专业课作业

2023-11-07 18:53:47 183

原创 MySQL第四章检索表记录课后习题

作业

2023-10-27 13:19:45 502 5

原创 MySQL插入、替换、更新、删除使用技巧

2. 替换:REPLACE语句(REPLACE与INSERT功能基本相同,使用REPLACE添加记录时,如果新纪录的主建值或唯一性约束的字段值与已有记录相同,则已有记录被删除后在添加新的记录。REPLACE避免重复插入的报错)4.删除:DELETE语句(如果没有指定WHERE句,则表中所以记录都删除,表还存在,delete from +表名 where +删除字段;1.插入:INSERT语句(使用INSERT语句可以将一条或多条记录插入表中,也可以将另一个表中的结果集插入到当前表中 )

2023-10-22 15:22:53 257 2

原创 python心得

1.列表对象的常用方法中pop,删除并返回指定位置元素,是将其单独找出来。2.列表对象方法需要常用,记住用法,区分细节。

2023-10-17 19:21:26 63 1

原创 Mysql课堂笔记

alter table test_one AUTO_INCREMENT=X #指定序号X开始。切片只能从左到右,若右到左则直接插队或为空。相乘只能有一个列表,另一边必须是个数值。

2023-10-17 18:47:25 57

原创 创建列表及将列表放入坦克大战游戏界面

" % Classmate), (400, number))# 调用展示墙壁的方法。Classmate_list = ["谭媛", "杨焱", "王兴维", "惠媛媛", "鲁全昕", "曾闽华"]2、在坦克代码墙壁列表下添加需要的列表。3、改用小画布那里的代码,1、通过赋值创建列表。

2023-10-07 15:44:46 121 1

原创 学生信息表E-R图

1.打开Navicat建立新表,分别命名为班级信息和学生信息。5.最后根据自己需求,建出合适的E-R图。3.找到模型,新建模型,从数据库中导入。

2023-10-06 21:10:33 1060 1

原创 Python程序设计与项目实践教程第三章例题

3.13.1.23-13.1.33-23.23.33-33.3.33.3.43.3.53.3.63.43.4.13.4.23.4.33.4.43.4.53.4.63-5

2023-09-28 16:58:28 82

原创 Mysql第一章课后作业概念题

使用关系模型对数据进行组织、存储、和管理的数据库称为关系数据库,关系数据库系统是支持关系数据模型的数据库系统。数据库:是“按照某种数据结构对数据进行组织、存储、和管理的内容器”,简单说就是用来存储和管理数据的容器。数据库系统:指在计算机中引入数据库后的系统,一般由数据库、数据库管理系统、应用程序和数据库管理员组成。E-R图中的实体表示现有世界具有相同属性描述的事物的集合,它不是某一个具体事物,而是一类事物的统称。1.简述什么是数据库、数据库系统、数据库管理系统。(4)数据库物理结构设计阶段。

2023-09-28 16:24:27 70

原创 Python中运行小游戏坦克大战操作步骤

1、打开Anaconda,在环境中点击Create新建一个test2、左键test打开3、输入指令pip install pygame,回车出现安装成功。

2023-09-22 18:39:39 407

原创 Mysql与Navicat创建数据库的优缺点

1、创建数据库时,流程化操作,先建数据库,再建数据表2、创建表时,内容详细,容易操作3、进行数据库内容的导出导入操作,很方便4、数据访问异常,也能捕捉到,很实用。

2023-09-22 17:30:08 155

原创 用Navicat创建数据表

Navicat | 下载 Navicat Premium 14 天免费 Windows、macOS 和 Linux 的试用版下载免费的 Navicat Premium 14 天试用版,并尝试 Navicat 版本 16 的最新功能。

2023-09-20 14:20:36 1058 1

原创 python爱心代码注解

force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.520) # alg魔法参数。force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6) # 这个参数...heart_halo_point = set() # x,y of ring pts# 光环的点坐标集合,去重。# center_y中心点y。

2023-09-15 15:05:55 353

原创 MySQL创建数据表

1、输入命令mysql -u root -p,-- 连接数据库管理系统,回车,输入自己设定的密码,再回车。

2023-09-14 20:19:49 178 1

原创 MySQL 5.7.43的下载安装详细教程

若出现Service successfully installed,证明安装成功;变量值:D:\mysql-5.7.43-winx64\mysql-5.7.43-winx64。*停止MySQL服务:在系统搜索框中输入服务,找到MySQL。点击右键,然后点击停止即可。②在cmd中进入MySQL安装目录,先自行打上D: 按回车,复制上路径。1.设置—>系统—>系统信息—>高级系统设置—>环境变量—>系统变量。,再输入你刚刚设置的密码,出现以下信息证明设置成功!,不需要输入密码,直接回车就进入MySQL了。

2023-09-09 18:20:14 3129 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除