Day 41 动态规划 part07

Day 41 动态规划 part07

3道题目
70. 爬楼梯
322. 零钱兑换
279. 完全平方数

解题理解

今天的题即使是已经做过的也用完全背包的思路去解。

70

一步m个台阶,就是物品,楼顶就是背包容量,dp[i]是爬到第i个台阶,有dp[i]种方法,dp[i]可以从dp[i - 1],dp[i - 2],。。。,dp[i - m]得到。

class Solution:
   def climbStairs(self, n: int) -> int:
       if n <= 2:
           return n
       dp = [0] * (n + 1)
       dp[0] = 1
       for i in range(1, n + 1):
           for j in range(1, 3):
               if (i - j) >= 0:
                   dp[i] += dp[i - j]
       return dp[n]

322

可以看成组合问题,dp[j]为凑足j元需要最少dp[j]个钱币,dp[j]可以从dp[j - coin[i]]中来,同时+1表示把当前的钱币也加上,因为是求最小问题,初始值可以设为极大值。

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [100000] * (amount + 1)
        dp[0] = 0
        for coin in coins:
            for j in range(coin, amount + 1):
                if dp[j - coin] != 100000:
                    dp[j] = min(dp[j], dp[j - coin] + 1)
        
        if dp[amount] == 100000: return -1
        return dp[amount]

279

也是典型的完全背包问题,n为背包,j是物品,不过物品还需要平方才能放进背包。dp[i]为和为i的完全平方数的最少数量为dp[i],dp[i]可以从dp[i - j * j]得到,然后再+1组成dp[i]

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [10000] * (n + 1)
        dp[0] = 0
        for i in range(n + 1):
            for j in range(1, int(i ** 0.5) + 1):
                dp[i] = min(dp[i], dp[i - j * j] + 1)

        return dp[n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值