3道题目
70. 爬楼梯
322. 零钱兑换
279. 完全平方数
解题理解
今天的题即使是已经做过的也用完全背包的思路去解。
70
一步m个台阶,就是物品,楼顶就是背包容量,dp[i]是爬到第i个台阶,有dp[i]种方法,dp[i]可以从dp[i - 1],dp[i - 2],。。。,dp[i - m]得到。
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2:
return n
dp = [0] * (n + 1)
dp[0] = 1
for i in range(1, n + 1):
for j in range(1, 3):
if (i - j) >= 0:
dp[i] += dp[i - j]
return dp[n]
322
可以看成组合问题,dp[j]为凑足j元需要最少dp[j]个钱币,dp[j]可以从dp[j - coin[i]]中来,同时+1表示把当前的钱币也加上,因为是求最小问题,初始值可以设为极大值。
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [100000] * (amount + 1)
dp[0] = 0
for coin in coins:
for j in range(coin, amount + 1):
if dp[j - coin] != 100000:
dp[j] = min(dp[j], dp[j - coin] + 1)
if dp[amount] == 100000: return -1
return dp[amount]
279
也是典型的完全背包问题,n为背包,j是物品,不过物品还需要平方才能放进背包。dp[i]为和为i的完全平方数的最少数量为dp[i],dp[i]可以从dp[i - j * j]得到,然后再+1组成dp[i]
class Solution:
def numSquares(self, n: int) -> int:
dp = [10000] * (n + 1)
dp[0] = 0
for i in range(n + 1):
for j in range(1, int(i ** 0.5) + 1):
dp[i] = min(dp[i], dp[i - j * j] + 1)
return dp[n]