怎样理解多元函数,连续与偏导存在的关系,偏导连续之间的关系

多元函数连续不是偏导存在的充分条件也不是必要条件。
而偏导连续则是更强的条件,即偏导存在且连续可以推出多元函数连续,反之不可。

下面来分析,首先大家需要了解这些定义都是人定义出来的,可以反映多元函数的部分特征。所以,只要掌握了这些定义的意义就可以看出其背后的本质,才能判断定义间的相互关系。

多元函数在某点可偏导,可是可能在这点沿不同方向的极限不同,所以不一定连续。

而连续函数的偏导是不是一定存在,这个例子在一元函数里也很常见,比如x的绝对值,在x=0的时候没有导数。

偏导连续(是偏导连续哦!而不是偏导数存在+函数连续!是偏导数存在且偏导数连续),是可以推出可微的。

而可微是很强的结论,因为可以用十分特殊的线性函数来逼近的话,很多特殊的反例就不见了,而线性函数是连续的,这由定义可以看出来。

所以,偏导存在且连续可以推出函数连续,反之不能。

反例沿用之前的反例,函数连续,但偏导不存在。

在数学分析中,特别是在多元函数的领域,"可微"、"""连续"以及"连续"这几个概念之间存在紧密的联系。 1. **可微**(Differential):如果一个多变量函数在其定义域内的一点上,其所有数都存在并且该点处的函数值也存在,则称这个函数在这点上可微。这是微分学的基本概念,意味着函数在这一点附近可以用线性近似来描述。 2. **数**(Partial Derivative):对于一个多元函数来说,每个自变量的数称为对应的数。比如对函数f(x, y)而言,∂f/∂x表示x对f的数,∂f/∂y表示y对f的数。 3. **连续**(Continuous Partial Derivatives):如果一个函数的所有数在某一点上都是存在的,并且这些数在该点的值也是连续的,那么我们说函数在这一点具有数的连续性。这是一个更弱的条件,即使函数本身可能不连续。 4. **连续性**(Continuity):对于单变量函数,如果它的图像是一个没有间断点的曲线,我们就说它是连续的。对于多变量函数,若函数值对于输入的变化是连续变化的,即在某一点的极限值等于该点的函数值,则称函数在这个点连续。 总结一下关系: - 如果一个函数在某一点既可微又连续,那么它在那一点必定是连续的。 - 反之,如果一个函数在某点连续,但数不存在或不连续函数并不一定可微。 - 连续只是可微的一个必要条件,而不是充分条件,因为还要求函数值本身存在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小猪今天有学习吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值