同余幂算法

求 b^n mod m ,其中 b n m都是大整数

#include <stdio.h>

int GetHighBitPos(int n){
    int pos = 31;
    
    while(pos >= 0){
        if((1 << pos) & n){
            return pos;
        }
        --pos;
    }
    return pos;
}

int mpower(int b,int n,int m){
    int pos = GetHighBitPos(n);     // 获取n的二进制最高位为1的位置
    int x = 1;
    int power = b % m;
    int ipos = 0;        // n 的bit 位索引,从第0位到第pos位
    while(ipos <= pos){
        if( (1 << ipos) & n){
            x = x * power % m;
        }
        power = power * power % m;
        ++ipos;
    }
    return x;
}
    

int main(){
    int b = 0;
    int n = 0;
    int m = 0;
    printf("Enter b n m: ");
    scanf("%d %d %d",&b,&n,&m);
    printf("%d^%d mod %d = %d\n",b,n,m,mpower(b,n,m));
    return 0;
}
输入 

3 644 645

输出

3^644 mod 645 = 36

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值