1.有一个A点和B点,处于n维空间中,其中还有障碍物,应该如何找到从A到B的最短路径?
类似贪心算法的思想,从A点到B点计算直线距离,然后沿着该路径走,遇到障碍物就回溯。
2.MySQL如何查看执行计划?如何根据执行计划优化索引?
MySQL中通过explain关键字分析查询执行计划,一般我们通过执行出来的结果看哪一条SQL语句最耗时就去优化那一条。
3.聚簇索引和非聚簇索引的区别?
聚簇索引(Clustered Index)
- 数据存储方式:
- 在聚簇索引中,数据行的物理顺序与索引键的逻辑顺序相同。
- 一个表只能有一个聚簇索引,因为数据行只能有一个物理顺序。
- 性能:
- 对于范围查询和排序操作,聚簇索引通常比非聚簇索引快,因为数据已经按索引键排序。
- 插入、更新和删除操作可能会较慢,因为需要维护数据的物理顺序。
- 应用场景:
- 适用于需要频繁进行范围查询的列,如日期列。
- 适用于需要排序输出的查询。
非聚簇索引(Non-Clustered Index)
- 数据存储方式:
- 在非聚簇索引中,索引键的逻辑顺序独立于数据行的物理顺序。
- 一个表可以有多个非聚簇索引,因为索引与数据行是分开的。
- 性能:
- 适用于精确查找,因为可以直接通过索引找到数据行。
- 对于范围查询,非聚簇索引可能比聚簇索引稍慢,因为数据行的物理顺序未按索引键排序。
- 更新、插入和删除操作通常比聚簇索引快,因为不需要维护数据的物理顺序。
- 应用场景:
- 适用于精确查找的列,如主键或唯一键。
- 适用于需要多列组合查询的场景。
4.根据不同的字段建立什么样的索引?
- 主键和唯一键
- 主键(Primary Key): 通常会自动创建聚簇索引,因为主键值是唯一的,并且每行数据的物理位置按照主键值排序。
- 唯一键(Unique Key): 通常会创建非聚簇索引,以确保列中的值唯一。
- 外键
- 外键(Foreign Key): 在外键列上创建非聚簇索引可以加速连接操作和外键约束检查。
- 频繁查询的列
- 高频查询列: 对于经常在 WHERE 子句中使用的列,应考虑建立索引,以加速查询。
- JOIN 列: 在经常参与表连接的列上创建索引,可以加快连接操作。
- 范围查询和排序
- 范围查询: 例如 BETWEEN、<、> 和 LIKE(以常量开头),在这些列上创建索引有助于加速查询。
- ORDER BY 和 GROUP BY: 在用于排序和分组的列上建立索引可以加快这些操作。
- 复合索引
- 复合索引(Composite Index): 对多个列的组合查询建立复合索引,可以提高查询性能。需要注意索引列的顺序应与查询中的使用顺序一致。
- 覆盖索引
- 覆盖索引(Covering Index): 包含所有查询需要的列的索引称为覆盖索引。它可以避免回表查询,提高查询效率。
- 分析查询性能
- 使用 EXPLAIN 或 EXPLAIN ANALYZE 等工具分析查询性能,确定哪些列需要索引。
- 使用实际的查询工作负载来测试索引的效果。
- 避免过多的索引
- 过多索引: 创建过多索引会增加插入、更新和删除操作的开销,应在性能和维护成本之间取得平衡。
- 冗余索引: 定期审查索引使用情况,删除不必要或冗余的索引。
5.以id作为主键自增和使用uuid作为主键分别有什么应用场景?
自增 ID 作为主键
优点:
- 简单性: 自增 ID 简单易用,生成顺序容易预测和理解。
- 性能高效: 自增 ID 通常是整数类型,占用存储空间小,查询和索引操作高效。
- 顺序插入: 插入新记录时,ID 按顺序递增,有利于聚簇索引的性能,减少页面分裂。
缺点:
1.单点故障: 在分布式系统中,自增 ID 可能导致单点故障,因为 ID 生成依赖于单个节点。
2.数据暴露: 顺序 ID 使得记录数量和插入速度容易被外部观察到。
3.合并数据困难: 合并来自不同数据源的记录时,可能会出现 ID 冲突问题。
适用场景:
1.单机系统: 适用于简单的单机系统或较小的应用程序。
2.自动增长的记录: 如日志记录、订单系统等,记录数量较大且需要高效插入和查询。
3.不需要隐藏数据量: 数据量和插入频率不需要保密的场景。
UUID 作为主键
优点:
- 全球唯一性: UUID 保证全局唯一性,适用于分布式系统和数据合并。
- 隐藏数据特性: UUID 是随机生成的,不容易推断出数据量和插入频率。
- 分布式生成: 不依赖单一节点,适合分布式系统和多数据中心部署。
缺点:
- 性能较低: UUID 比整数长,占用更多存储空间,对索引和查询性能有影响。
- 无序插入: UUID 的随机性导致插入顺序无序,可能影响聚簇索引的性能和存储效率。
- 可读性差: UUID 较长且不易读,不适合手动管理和调试。
适用场景:
- 分布式系统: 适用于分布式数据库和微服务架构,确保全局唯一性。
- 合并数据: 需要频繁合并不同来源的数据时,避免主键冲突。
- 需要隐藏数据特性: 数据量和插入频率需要保密的场景,如敏感数据和安全需求较高的应用。
6.B+树和B树的区别?
B树(B-Tree)
- 节点存储:
- 每个节点既存储键(key),也存储数据(data)。
- 内部节点可以存储指向子节点的指针。
- 叶子节点:
- 叶子节点也是存储键和数据的节点。
- 叶子节点之间没有链接。
- 搜索路径:
- 从根节点到叶子节点的路径长度相同。
- 每次查找过程中,可能在任何节点上找到目标键值对。
- 插入与删除:
- 插入和删除操作会进行分裂(split)和合并(merge)来保持平衡。
B+树(B+ Tree)
- 节点存储:
- 内部节点只存储键,不存储数据。
- 叶子节点存储所有数据。
- 内部节点用于指导搜索路径,所有数据都存储在叶子节点中。
- 叶子节点:
- 叶子节点存储键和数据。
- 叶子节点通过链表相连,形成一个链表结构,便于范围查询和顺序遍历。
- 搜索路径:
- 搜索路径同样从根节点到叶子节点。
- 所有数据都在叶子节点,所以数据的检索一定在叶子节点完成。
- 插入与删除:
- 插入和删除操作主要影响叶子节点,内部节点主要用于维持搜索路径。
- 插入和删除也会进行分裂和合并以保持树的平衡。
关键区别
- 节点内容:
- B树的所有节点都存储数据,内部节点和叶子节点都可能存储数据。
- B+树的内部节点仅存储键,所有数据都在叶子节点。
- 叶子节点链接:
- B树的叶子节点之间没有链接。
- B+树的叶子节点之间通过链表相连,便于顺序访问。
- 范围查询效率:
- B树的范围查询需要从根节点逐层遍历,不一定是顺序的。
- B+树的范围查询更高效,因为叶子节点之间有链表链接,可以顺序遍历。
- 树的高度:
- B+树通常比B树矮,因为其内部节点存储更多的键,能指向更多的子节点。
7.如何在平衡二叉树中插入新的节点?
AVL树中的插入
AVL树是一种自平衡的二叉搜索树,插入新节点时需要进行旋转操作以保持平衡。
- 插入新节点:
- 按照二叉搜索树的方式插入新节点。
- 从根节点开始,如果新节点的值小于当前节点的值,则移动到左子树,否则移动到右子树。
- 在适当的位置插入新节点。
- 更新平衡因子:
- 插入新节点后,从插入节点开始向上回溯,更新每个节点的平衡因子(高度差)。
- 平衡因子 = 左子树高度 - 右子树高度。
- 旋转操作:
- 如果平衡因子绝对值大于1,则需要进行旋转操作来重新平衡树。
- 有四种可能的旋转情况:
- 左左(LL)情况: 对不平衡的节点进行右旋转。
- 右右(RR)情况: 对不平衡的节点进行左旋转。
- 左右(LR)情况: 先对不平衡的节点的左子节点进行左旋转,然后对不平衡的节点进行右旋转。
- 右左(RL)情况: 先对不平衡的节点的右子节点进行右旋转,然后对不平衡的节点进行左旋转。
8.未来想从事什么方向的工作?
9.了解C++有哪些应用领域吗?
- 系统软件
- 操作系统: C++经常用于开发操作系统内核和系统工具,如Windows、Linux部分组件等。
- 驱动程序: 设备驱动程序和硬件接口通常使用C++编写,以便与操作系统高效交互。
- 游戏开发
- 游戏引擎: 大多数大型游戏引擎(如Unreal Engine和Unity)都使用C++,因为它能够提供高性能和低延迟。
- 图形编程: C++与OpenGL、DirectX等图形库结合,用于开发高性能的3D和2D图形应用。
- 高性能计算
- 科学计算: 用于需要高计算性能的领域,如天气预测、天体物理学模拟、分子建模等。
- 数值分析: C++广泛用于开发数值分析和数学计算软件,如MATLAB部分功能、GNU科学库等。
- 嵌入式系统
- 硬件编程: 由于C++能够直接操作内存和硬件寄存器,它被广泛用于嵌入式系统开发,如微控制器编程、嵌入式操作系统等。
- 实时系统: C++用于开发实时操作系统和实时应用,保证系统在特定时间内响应。
- 应用软件
- 桌面应用: C++用于开发高性能的桌面应用程序,如Adobe Photoshop、Microsoft Office的部分组件等。
- 跨平台应用: 使用Qt等框架,C++可以开发跨平台应用程序,支持Windows、macOS、Linux等多个平台。
- 金融工程
- 交易系统: C++用于开发高频交易系统和金融分析工具,提供低延迟和高吞吐量。
- 风险分析: 金融风险分析和定量分析软件(如QuantLib)使用C++进行开发。
- 通信系统
- 网络协议: C++用于实现网络协议和通信系统,如TCP/IP协议栈、VoIP应用等。
- 网络设备: 用于开发路由器、交换机等网络设备的控制软件。
- 数据库系统
- 数据库引擎: 许多数据库管理系统(如MySQL、MongoDB)使用C++开发,以提供高效的数据存储和检索。
- 查询优化: C++用于实现复杂的查询优化算法,提高数据库性能。
- 浏览器和渲染引擎
- 浏览器内核: 像Google Chrome的Blink、Mozilla Firefox的Gecko等浏览器内核使用C++开发,以提供高性能的网页渲染和JavaScript执行。
- 渲染引擎: C++用于开发图形渲染引擎,如WebKit,用于展示网页内容。
- 人工智能和机器学习
- 机器学习库: 许多机器学习和深度学习库(如TensorFlow的部分、Caffe)使用C++开发,以提高计算效率。
- AI应用: 高性能AI应用和算法实现,特别是在资源受限的环境中。
总结
C++的广泛应用得益于其高性能、直接内存管理能力和灵活性。它在系统软件、游戏开发、高性能计算、嵌入式系统、应用软件、金融工程、通信系统、数据库系统、浏览器和渲染引擎、人工智能和机器学习等领域都有重要作用。
10.反问面试官
- 本人需要在哪些地方加强?
- 公司现在主要做什么方向的业务?
- 实习生需要做哪些方面的工作?