原文链接:https://zhaokaifeng.com/?p=1752
例题:对下面的函数求导
f ( x ) = 1 + x + 1 − x − 2 f(x) = \sqrt{1+x} + \sqrt{1-x} - 2 f(x)=1+x+1−x−2
错误的求导过程
f ′ ( x ) = ( 1 + x ) ′ + ( 1 − x ) ′ + 2 ′ = ( ( 1 + x ) 1 2 ) ′ + ( ( 1 − x ) 1 2 ) ′ = 1 2 1 1 + x + 1 2 1 1 − x = 1 2 1 + x + 1 2 1 − x {f}'(x) = {(\sqrt{1 + x})}' + {(\sqrt{1 - x})}' + {2}' ={((1 + x)^{\frac{1}{2}})}' + {((1 - x)^{\frac{1}{2}})}' =\frac{1}{2} \frac{1}{\sqrt{1+x}} + \frac{1}{2} \frac{1}{\sqrt{1-x}} =\frac{1}{2 \sqrt{1+x}} + \frac{1}{2 \sqrt{1-x}} f′(x)=(1+x)′+(1−x)′+2′=((1+x)21)′+((1−x)21)′=211+x1+211−x1=21+x1+21−x1
上面这个计算过程是错的,错误的原因是在计算 1 + x \sqrt{1+x} 1+x 的导数时把 1 + x 1+x 1+x 视作了自变量,也就是说把 1 + x 1+x 1+x 视作了求导对象;而在对 1 − x \sqrt{1-x} 1−x 求导时,又把 1 − x 1-x 1−x 看作了求导自变量。
很显然,一个二维函数中不可能有两个不同的自变量,而且根据约定可知,当式子中出现 f ( x ) f(x) f(x) 或者 l i m x → 0 lim_{x \to 0} limx→0 时,就表明这个式子中的自变量是 x x x 且求导也要对 x x x 求导。
正确的求导过程
这里我们可以使用复合函数求导的链式法则计算本例题,复合函数的链式求导法则如下:
设 y = f ( u ) , u = μ ( x ) y = f(u), u = \mu(x) y=f(u),u=μ(x), 如果 μ ( x ) \mu(x) μ(x) 在 x x x 处可导, f ( x ) f(x) f(x) 在对应点 u u u 处可导,则复合函数 y = f [ μ ( x ) ] y = f[\mu(x)] y=f[μ(x)] 在 x x x 处可导,且有:
d y d x = d y d u d u d x = f ′ [ μ ( x ) ] μ ′ ( x ) \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = {f}'[\mu(x)]{\mu}'(x) dxdy=dudydxdu=f′[μ(x)]μ′(x)
于是,对于例题的正确求导过程如下:
f ′ ( x ) = ( 1 + x ) ′ + ( 1 − x ) ′ + 2 ′ = ( ( 1 + x ) 1 2 ) ′ + ( ( 1 − x ) 1 2 ) ′ = 1 2 ( 1 + x ) − 1 2 + 1 2 ( 1 − x ) − 1 2 = 1 2 ( 1 + x ) − 1 2 × ( x ) ′ + 1 2 ( 1 − x ) − 1 2 × ( − x ) ′ = 1 2 1 + x − 1 2 1 − x {f}'(x) = {(\sqrt{1 + x})}' + {(\sqrt{1 - x})}' + {2}' ={((1 + x)^{\frac{1}{2}})}' + {((1 - x)^{\frac{1}{2}})}' =\frac{1}{2}(1 + x)^{-\frac{1}{2}} + \frac{1}{2}(1 - x)^{-\frac{1}{2}} =\frac{1}{2}(1 + x)^{-\frac{1}{2}}\times{(x)}' + \frac{1}{2}(1 - x)^{-\frac{1}{2}} \times {(-x)}' =\frac{1}{2\sqrt{1+x}} - \frac{1}{2 \sqrt{1-x}} f′(x)=(1+x)′+(1−x)′+2′=((1+x)21)′+((1−x)21)′=21(1+x)−21+21(1−x)−21=21(1+x)−21×(x)′+21(1−x)−21×(−x)′=21+x1−21−x1