深度学习
文章平均质量分 89
深度学习
wydxry
红叶经霜而赤,腊梅沐雪而馨!
展开
-
目标检测-小目标检测方法
每种方法和算法都有其优点和挑战,适当的选择和组合这些方法可以有效提升小目标的检测性能。根据具体的应用场景和计算资源需求,可以选择最适合的策略来优化模型的检测能力。原创 2024-09-06 16:26:01 · 1435 阅读 · 0 评论 -
目标检测-RT-DETR
模块实现了多头自注意力机制,它通过并行计算多个注意力头来捕获输入序列中不同位置和不同层次的依赖关系。每个头可以学习不同的注意力模式,最终将这些模式结合起来,生成更加丰富的特征表示。这一机制在 Transformer 中的应用,使模型具备了捕捉长距离依赖关系和并行处理的能力,大大提高了计算效率。原创 2024-09-06 16:04:15 · 1714 阅读 · 0 评论 -
目标检测-YOLOv10
是 YOLO 系列的最新版本,进一步推动了目标检测技术的发展。它在前代(YOLOv9)的基础上进行了更多优化和改进,使得模型在复杂场景、实时性以及精度方面取得了更高的突破。YOLOv10 将高效的架构设计与新颖的技术结合,适应各种应用场景,包括自动驾驶、智能监控、机器人视觉等。原创 2024-09-06 15:40:00 · 1214 阅读 · 0 评论 -
目标检测-YOLOv7
YOLOv7 重构了检测头(Head),相比 YOLOv6 使用的 YOLOHead 模块,YOLOv7 引入了更加轻量化的架构,并通过深度可分离卷积(Depthwise Separable Convolutions)进一步减少了计算开销,同时保证检测精度。在 YOLOv6 以及早期的 YOLO 系列模型中,标签分配是基于固定的 IoU 阈值进行的,而 YOLOv7 通过动态调整标签分配策略,能够更有效地匹配目标与预测框,提高检测效果,尤其对小目标的检测性能有所提升。YOLOv7 采用了。原创 2024-09-06 15:03:51 · 1106 阅读 · 0 评论 -
目标检测-YOLOv6
YOLOv6 的设计目标是在提高模型检测精度的同时,进一步优化速度和效率,特别是在推理速度和部署便捷性方面。它采用了更先进的网络架构和优化技巧,在保持高性能的同时,极大地提升了推理速度。YOLOv6 使用了锚点自由检测机制,这意味着模型不再依赖于预定义的锚点框,能够自动适应不同的目标大小,简化了训练和推理过程,并且提升了小目标的检测能力。YOLOv6 在推理速度上优于 YOLOv5,尤其是在移动设备和嵌入式设备上,得益于其轻量化的设计和高效的推理优化,使其更加适合实时应用场景。YOLOv6 引入了新的。原创 2024-09-06 14:46:48 · 985 阅读 · 0 评论 -
目标检测-YOLOv5
YOLOv5 是 YOLO 系列的第五个版本,由团队发布。虽然 YOLOv5 并非 Joseph Redmon 原团队发布,但它在 YOLOv4 的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5 的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于 YOLOv4,YOLOv5 对于代码框架的重构、推理速度的提升,以及模型的轻量化等方面都有显著改进。原创 2024-09-06 10:23:38 · 2293 阅读 · 0 评论 -
目标检测-YOLOv4
YOLOv4 是 YOLO 系列的第四个版本,继承了 YOLOv3 的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比 YOLOv3,YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。原创 2024-09-06 10:05:08 · 1005 阅读 · 0 评论 -
目标检测-YOLOv3
YOLOv3 (You Only Look Once, Version 3) 是 YOLO 系列目标检测模型的第三个版本,相较于 YOLOv2 有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3 的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对 YOLOv3 改进和优势的介绍,以及 YOLOv3 核心部分的代码展示。原创 2024-09-06 09:37:01 · 743 阅读 · 0 评论 -
目标检测-YOLOv2
YOLOv2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由Joseph Redmon等人于2016年提出,并详细论述在其论文《YOLO9000: Better, Faster, Stronger》中。YOLOv2在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。原创 2024-09-06 09:14:39 · 1213 阅读 · 0 评论 -
目标检测-YOLOv1
YOLOv1(You Only Look Once version 1)是一种用于目标检测的深度学习算法,由Joseph Redmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速度,能够实时处理图像。端到端的训练和预测:从输入图像到输出检测结果,YOLOv1能够在一个网络中完成,无需额外的后处理步骤。原创 2024-09-06 09:03:45 · 1225 阅读 · 0 评论