BZOJ1016 [JSOI2008]最小生成树计数

这篇博客探讨了一道关于无向图最小生成树计数的问题,其中相同权值的边不超过10条。作者证明了在所有最小生成树中,每种权值的边数量相同,并提出了一个逐步处理权值的方法来计算最小生成树的数目。首先,通过构造最小生成树确定每种权值边的出现次数,接着按权值顺序,使用状态压缩和矩阵树定理避免枚举,有效地计算每个阶段的贡献,最终将各阶段的数目相乘得到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给定一张n<=100,m<=1000的无向图,另外相同权值的边不超过10条,求最小生成树的数目。


思路:首先我们将不同的权值从小到大分开考虑。


我们证明以下定理:一个无向图所有的最小生成树中某种权值的边的数目均相同。

开始时,每个点单独构成一个集合。

首先只考虑权值最小的边,将它们全部添加进图中,并去掉环,由于是全部尝试添加,那么只要是用这种权值的边能够连通的点,最终就一定能在一个集合中。

那么不管添加的是哪些边,最终形成的集合数都是一定的,且集合的划分情况一定相同。那么真正添加的边数也是相同的。因为每添加一条边集合的数目便减少1.

那么权值第二小的边呢?我们将之间得到的集合每个集合都缩为一个点,那么权值第二小的边就变成了当前权值最小的边,也有上述的结论。

因此每个阶段,添加的边数都是相同的。我们以权值划分阶段,那么也就意味着某种权值的边的数目是完全相同的。


于是我们考虑做法。

首先做一遍最小生成树看一下每种权值的边出现了几次。若不能构成生成树输出0.

然后考虑每一个阶段:从小到大处理每一种权值的边,状压枚举所有这种权值的边,看这种权值的边出现指定次数时能否全部加入当前的森林。若能,则这个阶段的数目+1.

那么答案就是每个阶段的数目的乘积。


对于每一个阶段,我们也可以不用暴力枚举,而用O(N^3)的Matrix-Tree定理求解行列式。若相同权值的边数过多的话就只能用这种方法了。


Code:(状态压缩)

#include <map>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace st
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值