- 博客(2)
- 收藏
- 关注
原创 PaddlePaddle论文复现营——StarGAN v2论文解读
一、提出背景论文作者认为:一个好的图像到图像的GAN模型,同时满足以下特性:1)生成图像的多样性。既生成的图像不能太单一,具有一定的丰富性。2)多领域的适应性。及能迁移人脸分割,也能在宠物图像上取得良好的效果。现有的方法难以同时满足以上两点要求,因此们提出了StarGANv2。经过在CelebAHQ和AFHQ数据集上测试,表明在图像质量、多样性和可扩展性方面均具有一定优势。此外,作者提出了一个新的动物脸数据集(AFHQ),数据质量较高且变化丰富,并将这个数据集公开发布给研究社区。二、重要概
2020-08-05 21:02:48
768
原创 基于Paddle_PARL的DQN算法
Deep Q-Learning 算法Deep Q-Learning 算法简称DQN,DQN是在Q-Learning的基础上演变而来的,DQN对Q-Learning的修改主要有两个方面:DQN利用深度卷积神经网络逼近值函数。DQN利用了经验回放训练强化学习的学习过程。DQN简介上节课介绍的表格型方法存储的状态数量有限,当面对围棋或机器人控制这类有数不清的状态的环境时,表格型方法在存储和查找效率上都受局限,DQN的提出解决了这一局限,使用神经网络来近似替代Q表格。本质上DQN还是一个Q-le
2020-06-26 21:11:55
724
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人