算法相关
人都傻了
这个作者很懒,什么都没留下…
展开
-
Random Walks for Synthetic Aperture Radar Image Fusion in Framelet Domain
摘要提出了一种用于合成孔径雷达(SAR)图像融合的基于小框架的随机游走(RWs)新方法,包括SAR可见图像,SAR红外图像和多波段SAR图像。在这种方法中,我们基于小框架系数的统计特性建立了一个新颖的RWs模型,以融合高频和低频系数。该模型转换融合问题,以估计每个小帧系数被分配给每个输入图像的概率。实验结果表明,所提出的方法在提高对比度的同时保留边缘,并且在定性和定量分析中都执行了许多传统的和...翻译 2020-05-16 13:24:26 · 448 阅读 · 0 评论 -
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds
摘要我们提出了一种球形核,以实现3D点云的有效图卷积。我们基于度量的内核系统地量化了本地3D空间,以识别数据中独特的几何关系。与常规网格CNN核类似,球形核保持平移不变性和不对称性,其中前者保证数据中相似局部结构之间的权重分配,而后者则有助于精细的几何学习。所提出的内核可用于不依赖于边缘的滤波器生成的图神经网络,从而使其在计算上吸引大点云。在我们的图形网络中,每个顶点都与单个点位置关联,并且边...翻译 2020-05-16 13:23:45 · 1127 阅读 · 0 评论 -
yolov3_tensorflow代码学习
# setting loggerslogging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename=args.progress_log_path, fil...原创 2020-05-16 13:22:57 · 806 阅读 · 1 评论 -
视觉深度估计的Pseudo-LiDAR:弥合自动驾驶3D对象检测中的差距(CVPR2019)
摘要3D对象检测是自动驾驶中的一项基本任务。只要从精确但昂贵的LiDAR技术中获得3D输入数据,最新技术就可以以高度准确的检测率获得优势。迄今为止,基于廉价的单目或立体图像数据的方法导致精度大大降低,而这种差距通常归因于基于图像的深度估计不佳。但是,在本文中,我们认为,造成差异最大的不是数据质量,而是其表示形式。考虑到卷积神经网络的内部工作,我们建议将基于图像的深度图转换为伪LiDAR表示-本...翻译 2020-05-16 13:22:25 · 3035 阅读 · 0 评论 -
A Multi-Stage Clustering Framework for Automotive Radar Data
摘要雷达传感器提供了一种独特的方法来执行环境感知任务以实现自动驾驶。尤其是它们在恶劣天气条件下表现良好的能力通常使它们优于其他传感器,例如相机或激光雷达。然而,通常使用的检测数据水平的高稀疏性和低维度是后续信号处理的主要挑战。因此,通常合并数据点以形成更大的实体,从中可以收集更多信息。合并过程通常以聚类算法的形式实现。本文介绍了一种新颖的方法,该方法首先应用两阶段聚类方法先滤出静态背景数据。两...翻译 2020-01-06 16:28:11 · 570 阅读 · 0 评论 -
Radar-based Feature Design and Multiclass Classification for Road User Recognition
摘要对单个样本的分类是一项复杂的任务,尤其是对于同一场景下有多个类或恶劣天气条件的挑战性场景。相对于完善的摄像系统,雷达传感器提供了一种正交的方式来测量此类场景。为了获得准确的分类结果,从测量数据中提取了50种不同的特征并对其性能进行了测试。从这些特征中,选择合适的子集并将其传递给随机森林和长短期记忆(LSTM)分类器,以获得雷达输入的类别预测。而且,表明了当数据集不够大时,为什么数据不平衡是...翻译 2020-01-06 16:27:44 · 436 阅读 · 0 评论 -
使用PointNets在雷达数据中进行二维汽车检测
摘要对于许多自动驾驶功能而言,对车辆环境的高度准确感知是至关重要的前提。现代高分辨率雷达传感器每个物体会产生多个雷达目标,这使得这些传感器特别适合2D物体检测任务。这项工作提出了一种仅使用PointNets仅根据稀疏雷达数据检测2D对象的方法。在文献中,到目前为止,仅介绍了执行对象分类或对象边界框估计的方法。相比之下,此方法使用单个雷达传感器有助于对物体进行分类以及包围盒估计。为此,对Poin...翻译 2020-01-06 16:27:07 · 1587 阅读 · 1 评论 -
基于RF的3D骨架检测
摘要本文介绍了RF-Pose3D,这是第一个从RF信号推断3D人体骨骼的系统。它不需要在身体上安装任何传感器,并且可以与多人一起使用,并且可以跨越墙壁和遮挡物。此外,它会生成动态骨骼,跟随人们移动,行走或坐下。因此,RF-Pose3D在基于RF的传感方面实现了重大飞跃,并实现了游戏,医疗保健和智能家居中的新应用。RF-Pose3D基于新颖的卷积神经网络(CNN)架构,该架构通过将高维卷积分...翻译 2020-01-06 16:26:40 · 2986 阅读 · 0 评论 -
Hybrid Conditional Random Field based Camera-LIDAR Fusion for Road Detection
摘要道路检测是自动驾驶汽车的主要挑战之一。道路检测通常使用两种传感器:摄像头和激光雷达。但是,它们每个人都有一些固有的缺点。因此,传感器融合通常用于结合这两种传感器的优点。尽管如此,当前的传感器融合方法还是由摄像机或激光雷达主导,而不是同时兼顾两者。在本文中,我们扩展了条件随机场(CRF)模型,并提出了一种新颖的混合CRF模型,以融合来自摄像机和LIDAR的信息。对齐LIDAR点和像素后,我们...翻译 2020-01-06 16:25:40 · 1060 阅读 · 0 评论 -
Fusion of LiDAR and Camera Sensor Data for Environment Sensing in Driverless Vehicles
摘要无人驾驶车辆通过感知和感知周围环境来做出准确的驾驶决策。几种不同的传感器(例如LiDAR,雷达,超声传感器和照相机)的组合被用来感应无人驾驶车辆的周围环境。异构传感器同时捕获环境的各种物理属性。需要通过传感器数据融合积极地利用这种多模态和感测冗余,以实现对环境的可靠一致的感知。但是,这些多模式传感器数据流在许多方面彼此不同,例如时间和空间分辨率,数据格式和几何对齐。为了使随后的感知算法利用...翻译 2020-01-06 16:24:41 · 1424 阅读 · 0 评论 -
Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment
摘要本文提出了一种用于环境中自动驾驶车辆的视觉和光检测与测距(LIDAR)融合的对象分类方法。该方法基于卷积神经网络(CNN)和图像上采样理论。通过创建LIDAR数据上采样的点云并将其转换为像素级深度信息,深度信息将与Red Green Blue数据连接并馈入深度CNN。所提出的方法可以使用集成的视觉和LIDAR数据获得用于自动车辆环境中目标分类的信息特征表示。还采用此方法来保证对象分类的准确...翻译 2020-01-06 16:24:10 · 718 阅读 · 0 评论 -
A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW
FMCW雷达:基于DFT的DOA估计 (使用基于简单乘法的虚拟阵列扩展)本文仅为翻译手册,留以自己查看,若需要深入交流,可以在个人分类中查找解析与实践内容(可能未发布),或与作者联系摘要我们提出了一种新的基于离散傅里叶变换(DFT)的方向(DOA)估计(Direction of arrival),其通过虚拟阵列扩展使用简单的乘法用于调频连续波(FMCW)雷达。基于DFT的DOA估计通...翻译 2019-08-15 15:42:31 · 1130 阅读 · 0 评论