《基于张量网络的机器学习入门》学习笔记9(HHL算法)

HHL算法是由Harrow、Hassidim和Lloyd提出的量子算法,能在O(log2N)时间内解决线性方程组。该算法在机器学习中如K-means聚类、支持向量机和数据拟合等领域有应用,通过量子计算的并行性实现算法加速。HHL算法包括制备工作系统初态、相位估计和辅助比特的旋转操作等步骤,以求解线性方程组的最优解。
摘要由CSDN通过智能技术生成

HHL算法

背景

求解线性方程是一个基本的数学问题。2008年, H a r r o w 、 H a s s i d i m Harrow、Hassidim HarrowHassidim L l o y d Lloyd Lloyd三位学者提出了一种可以在 O ( l o g 2 N ) O(log_2N) O(log2N)时间复杂度内求解线性方程组的量子算法,称其为 H H L HHL HHL算法。 H H L HHL HHL算法能应用于机器学习的 K − m e a n s K-means Kmeans聚类、支持向量机和数据拟合等方面,达到算法加速的目的。

基本假设

H H L HHL HHL算法是一个用量子计算机解决线性问题 A x = b Ax=b Ax=b最优解的算法
1.态 ∣ b ⟩ |b\rangle b容易制备;
2. A A A n n n阶厄米矩阵;
3.求解是稀疏的;
4.输入:一个 n × n n\times n n×n的矩阵和一个 n n n维向量 b b b
输出: n n n维向量 x x x,满足 A x = b Ax=b Ax=b.
5.令 v 1 , v 2 , ⋯   , v n v_1,v_2,\cdots,v_n v1,v2,,vn

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值