《基于张量网络的机器学习入门》学习笔记9
HHL算法
背景
求解线性方程是一个基本的数学问题。2008年, H a r r o w 、 H a s s i d i m Harrow、Hassidim Harrow、Hassidim和 L l o y d Lloyd Lloyd三位学者提出了一种可以在 O ( l o g 2 N ) O(log_2N) O(log2N)时间复杂度内求解线性方程组的量子算法,称其为 H H L HHL HHL算法。 H H L HHL HHL算法能应用于机器学习的 K − m e a n s K-means K−means聚类、支持向量机和数据拟合等方面,达到算法加速的目的。
基本假设
H H L HHL HHL算法是一个用量子计算机解决线性问题 A x = b Ax=b Ax=b最优解的算法
1.态 ∣ b ⟩ |b\rangle ∣b⟩容易制备;
2. A A A是 n n n阶厄米矩阵;
3.求解是稀疏的;
4.输入:一个 n × n n\times n n×n的矩阵和一个 n n n维向量 b b b,
输出: n n n维向量 x x x,满足 A x = b Ax=b Ax=b.
5.令 v 1 , v 2 , ⋯ , v n v_1,v_2,\cdots,v_n v1,v2,⋯,vn和