问题描述:
HDU 2006’10 ACM contest的颁奖晚会隆重开始了!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:
首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!
我的神、上帝以及老天爷呀,怎么会这样呢?
不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?
不会算?难道你也想以悲剧结尾?!
样例输入:
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1, 20],表示参加抽奖的人数。
1
2
样例输出:
对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。
50.00%
思路:对于第n个位置,它有n-1种放法,假设放在了位置k,对于位置k的元素,有两种情况,如果放在n位置,则剩下的所有情况就是dp[n - 2],否则,就转化为n-1个元素错排的问题。状态转移方程:dp[i] = (i - 1) * (dp[i - 1] + dp[i - 2])
AC代码:
#include <cstdio>
long long dp[22] = {0, 0, 1};
void init()
{
for(int i = 3; i < 22; i++)
{
dp[i] = (i - 1) * (dp[i - 1] + dp[i - 2]);
}
}
int main()
{
init();
int c;
while(~scanf("%d", &c))
{
int n;
for(int i = 0; i < c; i++)
{
scanf("%d", &n);
double all = 1;
for(int j = 2; j <= n; j++)
{
all *= j;
}
double rst = 100.0 * dp[n] / all;
printf("%.2lf%c\n", rst, '%');
}
}
return 0;
}