常用算法 --- 迭代法

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: 
(1)    选一个方程的近似根,赋给变量x0; 
(2)    将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; 
(3)    当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 
【算法】迭代法求方程的根 
{    x0=初始近似根; 
   do { 
     x1=x0; 
     x0=g(x1);    /*按特定的方程计算新的近似根*/ 
     } while ( fabs(x0-x1)>Epsilon); 
   printf(“方程的近似根是%f/n”,x0); 

迭代算法也常用于求方程组的根,令 
     X=(x0,x1,…,xn-1) 
设方程组为: 
     xi=gi(X)      (I=0,1,…,n-1) 
则求方程组根的迭代算法可描述如下: 
【算法】迭代法求方程组的根 
   {    for (i=0;i<n;i++) 
       x=初始近似根; 
     do { 
       for (i=0;i<n;i++) 
         y=x; 
       for (i=0;i<n;i++) 
         x=gi(X); 
       for (delta=0.0,i=0;i<n;i++) 
         if (fabs(y-x)>delta)      delta=fabs(y-x); 
       } while (delta>Epsilon); 
     for (i=0;i<n;i++) 
       printf(“变量x[%d]的近似根是 %f”,I,x); 
     printf(“/n”); 
   } 
   具体使用迭代法求根时应注意以下两种可能发生的情况: 
(1)    如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; 
(2)    方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值