Leetcode:5.longest-palindromic-substring(最长回文子串)

这道题挺难的,暴力法固然爽,但是仍会超时,优化后也是,可能优化不够把;
从0 - length-1用中心扩展法能保证比暴力法O(n^3)低;
好像官网还给出三个方法,有时间可以细琢磨;

#include <iostream>
#include <string>
using namespace std;

//中心扩展法
string longestPalindrome(string s)
{
    int len=s.length();
    if(s.length()==1) return s;
    string result="";
    int max=0;
    for(int i=0;i<len;i++)
    {
        int j;
        string test="";
        for(j=i-1;j>=0 && 2*i-j<len ;j--) //j=i-1 与 i+1比
        {
            if(s[j]!=s[2*i-j]) 
            {
                break;
            }
        }
        test=s.substr(j+1,2*i-2*j-1);//注意C++的substr(a,size)指取的是以a为左端点的size个字符
        if(test.length()>max)
        {
            max=test.length();
            result=test;
        }
        for(j=i-1;j>=0 && 2*i-j-1<len ;j--)//j=i-1 与 i比
        {
            if(s[j]!=s[2*i-j-1]) 
            {
                break;
            }
        }
        test=s.substr(j+1,2*i-2*j-2);
        if(test.length()>max)
        {
            max=test.length();
            result=test;
        }
    }
    return result;
}
//暴力法
// bool isPalindrome(string s)
// {
//     int len = s.length();
//     for (int i = 0; i < len / 2; i++)
//     {
//         if (s[i] != s[len - i - 1])
//             return false;
//     }
//     return true;
// }

// string longestPalindrome(string s) //a b  c d e f g f e d
// {                                  //abccb       //aa
//     int len = s.length();
//     string result = "";
//     int max = 0; //最长字串长度
//     for (int i = 0; i < len; i++)
//     {
//         for (int j = i ; j < len; j++)
//         {
//             string test = s.substr(i, j -i+1);
//             if (test.length() > max && isPalindrome(test))
//             {
//                 max = test.length();
//                 result = test;
//             }
//         }
//     }
//     return result;
// }

int main()
{
    cout<<longestPalindrome("a") << endl;
    cout << longestPalindrome("cbbd") << endl;
    cout << longestPalindrome("zudfweormatjycujjirzjpyrmaxurectxrtqedmmgergwdvjmjtstdhcihacqnothgttgqfywcpgnuvwglvfiuxteopoyizgehkwuvvkqxbnufkcbodlhdmbqyghkojrgokpwdhtdrwmvdegwycecrgjvuexlguayzcammupgeskrvpthrmwqaqsdcgycdupykppiyhwzwcplivjnnvwhqkkxildtyjltklcokcrgqnnwzzeuqioyahqpuskkpbxhvzvqyhlegmoviogzwuiqahiouhnecjwysmtarjjdjqdrkljawzasriouuiqkcwwqsxifbndjmyprdozhwaoibpqrthpcjphgsfbeqrqqoqiqqdicvybzxhklehzzapbvcyleljawowluqgxxwlrymzojshlwkmzwpixgfjljkmwdtjeabgyrpbqyyykmoaqdambpkyyvukalbrzoyoufjqeftniddsfqnilxlplselqatdgjziphvrbokofvuerpsvqmzakbyzxtxvyanvjpfyvyiivqusfrsufjanmfibgrkwtiuoykiavpbqeyfsuteuxxjiyxvlvgmehycdvxdorpepmsinvmyzeqeiikajopqedyopirmhymozernxzaueljjrhcsofwyddkpnvcvzixdjknikyhzmstvbducjcoyoeoaqruuewclzqqqxzpgykrkygxnmlsrjudoaejxkipkgmcoqtxhelvsizgdwdyjwuumazxfstoaxeqqxoqezakdqjwpkrbldpcbbxexquqrznavcrprnydufsidakvrpuzgfisdxreldbqfizngtrilnbqboxwmwienlkmmiuifrvytukcqcpeqdwwucymgvyrektsnfijdcdoawbcwkkjkqwzffnuqituihjaklvthulmcjrhqcyzvekzqlxgddjoir") << endl;
        return 0;
}


如有建议,感谢指明!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值