思路:深度优先搜索;设立一个全局变量flag,一旦找到终点,便将flag置为true,防止其进一步寻求多条路径;
加visited
时,很多人选择new一个二维数组出来,然而这里我们只需将已被试过无法到达目标的位置设为障碍见,即grid[x][y]=1即可,节省空间和时间;
int flag = false;
void dfs(vector<vector<int>> &grid, int x, int y, vector<vector<int>> &res)
{
//一个vector可以直接用{值}来表示
res.push_back({x, y});
//到达终点
int len_row = grid.size(), len_col = grid[0].size();
//如果到达终点
if (x == len_row - 1 && y == len_col - 1 && !grid[len_row - 1][len_col - 1])
{
flag = true;
return;
}
//未到终点
//向下走
if (x + 1 < len_row && !grid[x + 1][y])
{
dfs(grid, x + 1, y, res);
if (flag)
return;
}
//向右走
if (y + 1 < len_col && !grid[x][y + 1])
{
dfs(grid, x, y + 1, res);
if (flag)
return;
}
//下、右走完都到达不了终点,于是将该点设为障碍点
grid[x][y] = 1;
res.pop_back();
}
vector<vector<int>> pathWithObstacles(vector<vector<int>> &obstacleGrid)
{
vector<vector<int>> res;
int len_row = obstacleGrid.size(), len_col = obstacleGrid[0].size();
if (len_row == 0)
{
return res;
}
//如果起始点和终止点有一者为1(设障碍),则不存在路径
if (obstacleGrid[0][0] || obstacleGrid[len_row - 1][len_col - 1])
{
return res;
}
dfs(obstacleGrid, 0, 0, res);
return res;
}