Maximum Product of Word Lengths

给定一个字符串数组,找出没有共同字母的两个单词的最大长度乘积。如果不存在这样的单词对,则返回0。需要将字符串转化为二进制并进行按位与运算来判断是否有相同字符。
摘要由CSDN通过智能技术生成

Given a string array words, find the maximum value of length(word[i]) * length(word[j]) where the two words do not share common letters. You may assume that each word will contain only lower case letters. If no such two words exist, return 0.


在一组字符串中选取两个长度乘积最大的,并且这两个字符串不能含有相同的字符。


首先要排除掉有相同字符的,不进行比较。将字符串转换成二进制,每个字幕对应一位,这样两个字符串的二进制数进行安位与,为0就说明没有相同的字母。

#include<iostream>
#include<math.h>
#include<vector>
#include<string>
using namespace std;

class Solution{
public:
	int maxProduct(vector<string>& words){	
		int max=0;
		int n=words.size();
		if(n==0) return max;
		int nums[n];
		int T;
		for(int i=0;i<n;i++){
			nums[i]=0;
			for(int j=0;j<words[i].size();j++)
				nums[i] | =1<<((int)(words[i][j]-'a'));
		}

		for(int i=0;i<n-1;i++)
			for(int j=i+1;j<n;j++){
				if((nums[i]&nums[j])==0){
					int T=words[i].size()*words[j].size();
					max=max>T?max:T;
				}
			}
		return max;
	}
};


int main(){
	vector<string> words;
	string m;
	Solution maxPro;
	while(cin>>m){
		words.push_back(m);
	}
	cout<<maxPro.maxProduct(words);
	//cout<<"m";
	return 0;
}


Sure, I can help you with that. A non-weighted histogram of read lengths is a graphical representation of the distribution of read lengths in a set of sequencing data. In this type of histogram, each read length is represented by a single count, regardless of the number of times that length occurs in the dataset. To create a non-weighted histogram of read lengths, you can follow these steps: 1. Collect the read length data from your sequencing dataset. 2. Determine the range of read lengths in your dataset. 3. Divide the range of read lengths into a series of bins, each representing a range of read lengths. 4. Count the number of reads in each bin. 5. Plot the bin counts on the y-axis and the bin ranges on the x-axis to create a histogram. Here's an example code snippet in Python to create a non-weighted histogram of read lengths using the Matplotlib library: ``` import matplotlib.pyplot as plt # Example read length data read_lengths = [100, 200, 300, 400, 500, 200, 300, 300, 100, 100, 200, 500, 500] # Define the bin ranges bins = range(0, 600, 100) # Count the number of reads in each bin bin_counts, _, _ = plt.hist(read_lengths, bins=bins, color='blue') # Plot the histogram plt.xlabel('Read length') plt.ylabel('Count') plt.title('Non-weighted histogram of read lengths') plt.show() ``` This code will create a histogram with five bins representing read lengths from 0-100, 100-200, 200-300, 300-400, and 400-500. The bin counts will be [4, 4, 3, 1, 2], respectively, and the resulting histogram will show the distribution of read lengths in the dataset.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值