长方体的摆放

时间限制:1秒

空间限制:32768K

一个长方体,长宽高分别为x,y,z,都为自然数。

现在要把若干个相同的长方体摆成高为N的一根柱形体。

每层摆1个,如果两种摆法的高度是一样的,则认为这两种摆法等价,所以每层只有三种摆法。

求一共有多少种摆法。

 

输入描述:

第一行为一个数字N,N>=1且N<=100,表示要摆放的高度
第二行为长方体的长宽高,x、y、z都为无符号整数,按升序排列。

 

输出描述:

摆法总数,已知该总数会小于10000000

 

输入例子1:

10
5 6 7

 

输出例子1:

1
#include<iostream>
#include<algorithm>
using namespace std;
int n;
int a[5];
int cnt = 0;
void finds(int t)
{
    if(t==n)
    {
        cnt++;
        return ;
    }
    if(t>n)return ;
    for(int i = 0; i < 3; i++)
    {
        finds(t+a[i]);
    }
    return ;
}
int main()
{
    cin>>n;
    for(int i = 0; i < 3; i++)cin>>a[i];
    sort(a,a+3);
    finds(0);
    cout<<cnt<<endl;


    return 0;
}

 

### 关于蓝桥杯比赛中的货物摆放问题 #### 问题描述 在蓝桥杯比赛中,“货物摆放”问题是要求将 \(n\) 箱规则的正方体货物摆放到仓库中,形成一个大的长方体。具体来说,需要找到满足条件 \(L \times W \times H = n\) 的所有可能组合,其中 \(L\), \(W\), 和 \(H\) 是整数。 --- #### 解题思路分析 该问题的核心在于分解给定的大数 \(n\) 并寻找其所有约数组合。以下是具体的解决方法: 1. **质因数分解** 将 \(n\) 进行质因数分解,以便后续构建所有可能的三元组 \((L, W, H)\)[^2]。例如,对于 \(n = 60\),可以将其表示为 \(2^2 \cdot 3^1 \cdot 5^1\)。 2. **枚举约数** 枚举所有可能的约数并存储到集合或列表中。这一步可以通过遍历从 \(1\) 到 \(\sqrt{n}\) 来完成[^5]。每次判断当前数值是否能被 \(n\) 整除,如果是,则记录下对应的两个约数。 3. **三重循环验证** 使用三层嵌套循环来尝试分配这些约数作为 \(L\), \(W\), 和 \(H\) 的值,并检查它们相乘是否等于 \(n\)。为了避免重复计数,可以在外层设置约束条件,比如让 \(L \leq W \leq H\)[^4]。 4. **优化策略** - 减少不必要的计算量:提前终止不可能成立的情况。 - 存储中间状态以减少冗余运算。 --- #### Python 实现代码 下面提供了一种基于上述逻辑的有效解决方案: ```python def count_ways(n): factors = [] # Step 1: 获取所有小于 sqrt(n) 的因子 i = 1 while i * i <= n: if n % i == 0: factors.append(i) if i != n // i: factors.append(n // i) i += 1 ways = 0 factor_set = sorted(factors) # Step 2: 双重循环查找符合条件的 (L, W, H) for idx_L in range(len(factor_set)): L = factor_set[idx_L] if n % L != 0: continue remaining_after_L = n // L for idx_W in range(idx_L, len(factor_set)): # 让 W >= L W = factor_set[idx_W] if remaining_after_L % W != 0: continue H = remaining_after_L // W if W <= H and L * W * H == n: # 避免重复统计 ways += 1 return ways # 测试函数 if __name__ == "__main__": test_n = int(input("请输入货物数量 n: ")) result = count_ways(test_n) print(f"总共有 {result} 种不同的摆放方式.") ``` 此程序首先获取输入 \(n\) 的全部因子,接着利用双重循环筛选出合法的三元组数目。 --- #### 复杂度讨论 时间复杂度主要取决于因子的数量以及如何效处理多重循环。最坏情况下接近 \(O(d^2)\),这里 \(d\) 表示 \(n\) 的不同因子总数。然而,在实际应用中由于加入了剪枝操作,性能通常优于理论上限。 --- #### 结论 综上所述,通过先提取目标数字的所有因子再运用适当技巧排除多余情形的方法能够很好地应对此类题目需求[^3]。这种方法不仅易于理解而且具有良好的扩展性适用于更大规模的数据集。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值