poj 2083 Fractal 分形基本方法( 总结) 递归

思路:分形题目,同一个操作,一般都用递归

分形题目思路:    (1)首先确定一个坐标或多个坐标,视题目而定,这几个坐标是可以确定一个最小或者次小图形的;

                            (2)一般来说,分形题目都离不开深度(状态)类似的词,所以dfs可以写成dfs(depth,int x,int y ...........),,,省略号时题目而定,一般都是坐标,长度,宽度之类的

                            (3)分形图形基本都是有规律的,对称的,每一个“深度”(既是状态)都有相应的宽度和长度,通过当前的点的坐标和长度宽度,去确定其他相对应或者相对称图形的坐标,有几个对应的图形当前dfs函数就有几个下一个状态 如这道题有5个小图形,dfs(n-1,....)  dfs(n-1,.....) dfs(n-1......) dfs(n-1.......) dfs(n-1.......)

                              (4)注意递归终点,一般都是深度为1时返回并填充字母。

   


好了,根据上面的思路,再把下面的代码看懂,以后遇到分形就能立刻有思路了


题目链接:http:而我听见下雨的声音,想起你用唇语说爱情



#include<cstdio>
#include<cstring>
char a[1000][1000];
int mypow(int d)
{
    int ans=1;
    for(int i=1;i<=d;i++)
        ans*=3;
    return ans;
}
void dfs(int cur,int x,int y)
{
    if(cur==1)
    {
      a[x][y]='X';
      return ;
    }
    int s=mypow(cur-2);
    dfs(cur-1,x,y);
    dfs(cur-1,x,y+2*s);
    dfs(cur-1,x+s,y+s);
    dfs(cur-1,x+2*s,y);
    dfs(cur-1,x+2*s,y+2*s);
}
int main(void)
{
    int n;
    while(scanf("%d",&n))
    {
        if(n==-1) break;
        memset(a,' ',sizeof(a));
        dfs(n,1,1);
        int s=mypow(n-1);
        for(int i=1;i<=s;i++)
            a[i][s+1]='\0';
        for(int i=1;i<=s;i++)
            printf("%s\n",a[i]+1);//在poj测试,put(a[i]+1)用了16ms,而printf("%s")用了94ms
        printf("-\n");
    }
    return 0;
}


  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值