可视化VGG16的过滤器,通过输入空间的梯度下降
Keras实例目录
效果展示
http://i.imgur.com/4nj4KjN.jpg
代码注释
'''Visualization of the filters of VGG16, via gradient ascent in input space.
可视化VGG16的过滤器,通过输入空间的梯度下降
This script can run on CPU in a few minutes.
本脚本在CPU上需要运行一段时间
Results example: http://i.imgur.com/4nj4KjN.jpg
结果实例:http://i.imgur.com/4nj4KjN.jpg
'''
from __future__ import print_function
from scipy.misc import imsave
import numpy as np
import time
from keras.applications import vgg16
from keras import backend as K
# dimensions of the generated pictures for each filter.
# 每个过滤器生成的图像的尺寸。
img_width = 128
img_height = 128
# the name of the layer we want to visualize
# (see model definition at keras/applications/vgg16.py)
# 可视化的层名(见模型定义,在keras/applications/vgg16.py)
layer_name = 'block5_conv1'
# util function to convert a tensor into a valid image
# 函数将张量转换为有效图像
def deprocess_image(x):
# normalize tensor: center on 0., ensure std is 0.1
# 归一化张量:0在中心,保证标准是0.1
x -= x.mean()
x /= (x.std() + K.epsilon())
x *= 0.1
# clip to [0, 1]
# 剪辑到[ 0, 1 ]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
# 转换为RGB数组
x *= 255
if K.image_data_format() == 'channels_first':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
# build the VGG16 network with ImageNet weights
# 使用ImageNet权重建立VGG16网络
model = vgg16.VGG16(weights='imagenet', include_top=False)
print('Model loaded.')
model.summary()
# this is the placeholder for the input images
# 输入图像的占位符
input_img = model.input
# get the symbolic outputs of each "key" layer (we gave them unique names).
# 符号输出每个“关键层”(已给了他们唯一名称)。
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
def normalize(x):
# utility function to normalize a tensor by its L2 norm
# 利用L2范数正规化张量的效用函数
return x / (K.sqrt(K.mean(K.square(x))) + K.epsilon())
kept_filters = []
for filter_index in range(200):
# we only scan through the first 200 filters,
# but there are actually 512 of them
# 只扫描前200个过滤器,实际有512个过滤器
print('Processing filter %d' % filter_index)
start_time = time.time()
# we build a loss function that maximizes the activation
# of the nth filter of the layer considered
# 建立损失函数,它最大化期望层过滤器的激活函数
layer_output = layer_dict[layer_name].output
if K.image_data_format() == 'channels_first':
loss = K.mean(layer_output[:, filter_index, :, :])
else:
loss = K.mean(layer_output[:, :, :, filter_index])
# we compute the gradient of the input picture wrt this loss
# 计算输入图像的梯度损耗。
grads = K.gradients(loss, input_img)[0]
# normalization trick: we normalize the gradient
# 规范化技巧:规范梯度
grads = normalize(grads)
# this function returns the loss and grads given the input picture
# 此函数返回输入图片的损失和梯度
iterate = K.function([input_img], [loss, grads])
# step size for gradient ascent
# 梯度上升的步长
step = 1.
# we start from a gray image with some random noise
# 从有随机噪音的灰色图片开始
if K.image_data_format() == 'channels_first':
input_img_data = np.random.random((1, 3, img_width, img_height))
else:
input_img_data = np.random.random((1, img_width, img_height, 3))
input_img_data = (input_img_data - 0.5) * 20 + 128
# we run gradient ascent for 20 steps
# 运行梯度上升20步
for i in range(20):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step
print('Current loss value:', loss_value)
if loss_value <= 0.:
# some filters get stuck to 0, we can skip them
# 有些过滤器卡在0,跳过它们。
break
# decode the resulting input image
# 解码得到的输入图像
if loss_value > 0:
img = deprocess_image(input_img_data[0])
kept_filters.append((img, loss_value))
end_time = time.time()
print('Filter %d processed in %ds' % (filter_index, end_time - start_time))
# we will stich the best 64 filters on a 8 x 8 grid.
# 在8×8网格上列出最好的64个过滤器
n = 8
# the filters that have the highest loss are assumed to be better-looking.
# 假设具有最高损失的滤波器效果更好。
# we will only keep the top 64 filters.
# 只需要保持前64个过滤器
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]
# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
# 建立一个黑色的图片,大小为128×128,有足够的空间为我们的8×8过滤器处理,之间的差距为5px
margin = 5
width = n * img_width + (n - 1) * margin
height = n * img_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))
# fill the picture with our saved filters
# 用保存的过滤器填充图片
for i in range(n):
for j in range(n):
img, loss = kept_filters[i * n + j]
stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
(img_height + margin) * j: (img_height + margin) * j + img_height, :] = img
# save the result to disk
# 保存结果(为图片)
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)
代码执行
Keras详细介绍
中文:http://keras-cn.readthedocs.io/en/latest/
实例下载
https://github.com/keras-team/keras
https://github.com/keras-team/keras/tree/master/examples
完整项目下载
方便没积分童鞋,请加企鹅452205574,共享文件夹。
包括:代码、数据集合(图片)、已生成model、安装库文件等。