欧拉函数

欧拉函数

第一次写欧拉函数的题,琢磨的半天,最后还是只能按照最开始的想法写......
欧拉函数PHI(n)表示的是比n小,并且与n互质的正整数的个数(包括1)。比如:
PHI(1) = 1; PHI(2) = 1; PHI(3) = 2; PHI(4) = 2; ... PHI(9) = 6; ...

要计算一个正整数n的欧拉函数的方法如下:
1. 将n表示成素数的乘积: n = p1 ^ k1 * p2 ^ k2 * ... * pn ^ kn(这里p1, p2, ..., pn是素数)
2. PHI(n) =  (p1 ^ k1 - p1 ^ (k1 - 1)) *  (p2 ^ k2 - p2 ^ (k2 - 1)) * ... *  (pn ^ kn - pn ^ (kn - 1))
              = Mult { pi ^ ki - pi ^ (ki -1) }

证明过程如下:
1. 容易想到:当n为素数时,PHI(n) = n - 1。因为每个比n小的正整数都和n互素。当n为素数p的k次方时,PHI(n) = p ^ k - p ^ (k - 1)。因为在1到n之间的正整数只有p的倍数和n不互素,这样的数有(p ^ k / p)个。
2. 如果m和n互素,即GCD(m, n) = 1,那么PHI(m * n) = PHI(m) * PHI(n)。用中国剩余定理可以证明,证明的思路是建立这样一种一一对应的关系(a, b) <-> x,其中正整数a小于m并且gcd(a, m) = 1,正整数b小于n并且gcd(b, n) = 1,正整数x小于m*n并且gcd(m*n, x) = 1。证明过程如下:
    1)根据中国剩余定理,如果m和n互素,那么关于未知量x的方程组x % m = a, x % n = b(0 <= a < m, 0 <= b < n),当0 <= x < m * n时存在并且仅存在一个解。容易证明,如果两个这样的方程组有相同的m, n但是a, b不同,那么他们的解x一定不同。
    2)首先用反正法证明:gcd(m, a) = 1且gcd(n, b) = 1是gcd(m*n, x) = 1的必要条件:假设gcd(a, m) = k > 1,由此可得:a = a' * k; m = m' * k => x = k' * m + a = k' * k * m' + k * a' = k * (k' * m' + a'); 所以gcd(x, m) = k > 1。同理可证,如果gcd(b, n) > 1, 那么gcd(x, n) > 1。所以x和m * n互素的必要条件是a和m互诉且b和n互素。
    3)接下来我们证明充分性:由x % m = a 可以得到x = k * m + a;由欧几里德算法求最大公约数的过程(就不证明了,呵呵,还得想)可以知道gcd(x, m) = gcd(m, a) = 1;同理可得,如果gcd(n, b) = 1那么gcd(x, n) = 1。接下来很容易得到:gcd(m*n, x) = 1。从而证明了充分性。
    4)上面三步的结论表明,数对(a, b)是可以和x建立起一一对应的关系的,所以有多少个不同的(a, b),就有多少个不同的x。
3.将n分解成素数乘积后,显然对于任意的i, j(i != j)都满足 pi ^ ki和pj ^ kj是互素的,于是可以的到上面的公式。

跟据上面的公式,可以得到关于欧拉函数的递推关系:
假设素数p能整除n,那么
如果p还能整除n / p, PHI(n) = PHI(n / p) * p;
如果p不能整除n / p, PHI(n) = PHI(n / p) * (p - 1);

下面的程序是求1到10000之间所有整数的欧拉函数:
char mark[10000] = {0}; 
int prime[1230];
int size = 0;
int phi[10000];

int main () {
    int i, j;

    /*筛法求素数*/
    for (i = 2; i < 10000; i++) {
        if (!mark[i]) prime[size++] = i;

        for (j = 0; j < size && prime[j] * i < 10000; j++) {
            mark[prime[j] * i] = 1;
            if (i % prime[j] == 0) break;
        }
    }
    /*求欧拉函数*/
    phi[1] = 1;
    for (i = 2; i < 10000; i++) {
        if (!mark[i]) {
            phi[i] = i - 1;
            continue;
        }
        for (j = 0; j < size && prime[j] * prime[j] <= i; j++) {
            if (i % prime[j] == 0) {
                if (i / prime[j] % prime[j] == 0)
                    phi[i] = prime[j] * phi[i / prime[j]];
                else
                    phi[i] = (prime[j] - 1) * phi[i / prime[j]];
                break;
            }
        }
    }
    return 0;
}

从别人那里学到的对求欧拉函数部分的优化,使每个数的欧拉函数只由它的最小素因子求出:
    phi[1] = 1;
    for (i = 1; i < 10000; i++) {
        for (j = 0; j < size && prime[j] * i <= 10000; j++) {
            if (i % prime[j] == 0) {
                phi[prime[j] * i] = prime[j] * phi[i];
                break;
            }
            else {
                phi[prime[j] * i] = phi[i] * (prime[j] - 1);
            }
        }
    }
   
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值