- 博客(3)
- 收藏
- 关注
原创 第6章 支持向量机
本章内容:(1)简单介绍支持向量机 (2)利用SMO进行优化 (3) 利用核函数对数据进行空间转换 (4)将SVM和其他分类器进行对比
2021-08-17 09:45:32 370
原创 第五章 Logistic回归
一 本章内容1.Sigmoid函数和Logistic回归分类器2.最优化理论初步3.梯度下降最优化方法4.数据中的缺失项处理
2021-08-14 10:51:49 297
原创 机器学习-------第四章 基于概率论的分类方法:朴素贝叶斯
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言前两章我们要求分类器做出艰难的决策,也就是给出明确答案,有事务分类器也会产生错误,这时可以要求给出一个最优类别的猜测结果,并给出猜测概率的估计值。一、朴素贝叶斯的学习目标1.使用概率分布进行分类2.学习朴素贝叶斯分类器3.解析RSS源数据4.使用朴素贝叶斯来分析不同地区的态度二、使用步骤
2021-08-11 10:07:04 490
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人