如何在AirPods Pro中使用降噪功能?这里提供几个方法

本文详细介绍了如何在AirPodsPro上开启降噪功能,包括通过控制中心、设置菜单和物理操作。还解释了降噪模式和透明模式的工作原理,以及对设备系统要求的说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍了如何在AirPods Pro上使用降噪功能,如何关闭它,以及该功能的工作原理。

注意:AirPods Pro和AirPods Max支持噪音消除。你的设备必须运行iOS 13.2或iPadOS 13.2或更高版本才能使用降噪功能。

如何在AirPods Pro上打开降噪功能

AirPods Pro凭借其噪音控制功能提供了一流的聆听体验。要从噪音控制中获得最佳声音,请在AirPods Pro上使用降噪功能。有四种方法可以做到这一点。

在控制中心打开AirPods Pro的降噪功能

控制中心有一个选项,你可以使用它为AirPods Pro打开降噪功能,这可能是打开该功能最快、最简单的方法。

1、将AirPods连接到你的设备。

2、打开控制中心(在某些型号上,从右上角向下滑动即可。在其他型号上,则从屏幕底部向上滑动)。

3、长按音量滑块(AirPods连接后会显示一个图标)。

4、点击噪音控制。

5、点击降噪。

在设置中打开AirPods Pro的降噪功能

你可以使用“设置”选项,只需轻轻点击几下,即可在AirPods Pro上打开降噪功能。

1、点击“设置”应用程序将其打开。

2、点击蓝牙。

3、点击AirPods Pro旁边的i。

4、在“噪波控制”部分中,点击“降噪”。

使用AirPods在AirPods Pro上打开降噪功能

不想看屏幕吗?你也可以通过触摸AirPods来启用降噪功能。按住一个AirPod的杆耳机柄(按下与播放/暂停音频或接听/结束电话时相同的区域)。按住直到听到一声蜂鸣声。每个蜂鸣音都表示你已在“噪音控制”设置之间移动:“降噪模式”、“透明模式”或“关闭”。选择降噪模式后停止按住。

​提示:你也可以使用Siri来打开降噪功能。只需激活Siri,然后说:“Siri,打开降噪功能。

降噪功能如何在AirPods Pro上工作

降噪功能是AirPods Pro名为“噪音控制”功能的一部分。噪音控制有两种风格:降噪模式和透明模式。它们都能过滤掉背景噪音,让你的听力体验更好。这也意味着你可以用更低的音量听,减少听力受损的可能性。

噪音控制使用AirPods的内置麦克风来检测环境声音水平,并使用软件来过滤这些声音。透明模式允许一些声音通过,比如声音,这样你仍然想听到这些声音。

降噪模式有点不同。它屏蔽了尽可能多的声音,给人一种被你正在听的东西包围的感觉,并大大降低了你周围一切的噪音水平。

参考资源链接:[MATLAB语音信号处理全攻略:基础到高级技术教程](https://wenku.csdn.net/doc/8ab5hyvmy2?utm_source=wenku_answer2doc_content) 为了实现基本的语音降噪功能,首先需要了解语音信号处理中的噪声去除原理和常见的降噪方法。《MATLAB语音信号处理全攻略:基础到高级技术教程》详细介绍了多种降噪技术和方法,可以作为你的学习指南。 在MATLAB中,一个常见的语音降噪方法是谱减法。该方法基于傅里叶变换将语音信号从时域转换到频域,然后通过估计噪声功率谱,并从语音的功率谱中减去估计的噪声功率谱,最后通过逆傅里叶变换恢复语音信号。以下是使用谱减法进行降噪的基本步骤: 1. 读取含有噪声的语音信号。 2. 对语音信号进行短时傅里叶变换(STFT)获取频谱。 3. 估计噪声功率谱,并设置一个合理的门限值以避免过度减噪。 4. 对语音功率谱进行减噪处理,即从语音功率谱中减去估计的噪声功率谱,并加以门限值处理。 5. 通过逆短时傅里叶变换(ISTFT)恢复时域信号。 示例代码如下: ```matlab % 读取含噪声的语音文件 [noisySpeech, Fs] = audioread('noisy_speech.wav'); % 设置FFT参数 frameSize = 256; overlap = 128; window = hamming(frameSize); % 对信号进行短时傅里叶变换 [signalSpectrum, freqVector] = stft(noisySpeech, Fs, 'Window', window, 'OverlapLength', overlap); % 初始化噪声估计矩阵 noiseEstimate = zeros(size(signalSpectrum)); % 假设噪声信号在语音信号开始之前,取前100帧来估计噪声功率谱 for i = 1:100 noiseEstimate = noiseEstimate + abs(signalSpectrum(:, i)).^2; end noiseEstimate = noiseEstimate / 100; % 设置门限值 threshold = 0.5 * noiseEstimate; % 进行谱减法处理 for i = 1:size(signalSpectrum, 2) speechSpectrum = abs(signalSpectrum(:, i)); signalSpectrum(:, i) = max(speechSpectrum - noiseEstimate, threshold) .* exp(1i * angle(signalSpectrum(:, i))); end % 通过逆短时傅里叶变换恢复时域信号 [denoisedSpeech, timeVector] = istft(signalSpectrum, Fs, 'Window', window, 'OverlapLength', overlap); % 播放降噪后的语音并保存 sound(denoisedSpeech, Fs); audiowrite('denoised_speech.wav', denoisedSpeech, Fs); ``` 在上述代码中,我们使用了MATLAB内置函数`stft`和`istft`进行短时傅里叶变换和逆变换,以及`audioread`和`audiowrite`来读取和保存语音文件。这段代码提供了一个基本的谱减法实现,你可以通过调整参数和算法来优化降噪效果。 阅读《MATLAB语音信号处理全攻略:基础到高级技术教程》的第05章,可以更深入地理解语音降噪的理论和实践,以及如何调整代码来适应不同的情况。在掌握了这些基础知识后,你可以进一步探索其他章节的内容,学习如何在MATLAB中实现更高级的语音信号处理技术。 参考资源链接:[MATLAB语音信号处理全攻略:基础到高级技术教程](https://wenku.csdn.net/doc/8ab5hyvmy2?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驾驭信息纵横科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值