萌新刚学最小公倍数

qaq

结论

对于任意非负整数 n , m n, m n,m,存在下述结论:
lcm ( C n 0 , C n 1 , ⋯   , C n m ) = lcm ( n − m + 1 , n − m + 2 , ⋯   , n + 1 ) n + 1 \text{lcm}(C_n^0,C_n^1,\cdots,C_n^m)=\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1} lcm(Cn0,Cn1,,Cnm)=n+1lcm(nm+1,nm+2,,n+1)

记号

v p ( n ) v_p(n) vp(n) 表示质数 p p p n n n 中的幂次。

Kummer 定理

m , n ( 0 ≤ m ≤ n ) m, n (0\le m\le n) m,n(0mn) 为正整数, p p p 为素数,则 C n m C_{n}^m Cnm p p p 的幂次等于 ( n − m ) (n-m) (nm) m m m 做加法时在 p p p 进制下的进位次数。

证:令 n = ( n k n k − 1 ⋯ n 0 ‾ ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p n=(nknk1n0)p,则
v p ( n ! ) = ∑ i = 1 k ⌊ n p i ⌋ = ∑ i = 1 k n k n k − 1 ⋯ n i ‾ = ∑ i = 1 k ∑ j = i k n j p j − i = ∑ j = 1 k n j ∑ i = 0 j − 1 p i = ∑ i = 1 k n i p i − 1 p − 1 = 1 p − 1 ( ∑ i = 1 k n i p i − ∑ i = 1 k n i ) = 1 p − 1 ( n − ∑ i = 0 k n i ) v_p(n!)=\sum_{i=1}^k \left \lfloor \frac{n}{p^i} \right \rfloor=\sum_{i=1}^k \overline{n_kn_{k-1}\cdots n_i}=\sum_{i=1}^k \sum_{j=i}^k n_jp^{j-i}=\sum_{j=1}^k n_j \sum_{i=0}^{j-1} p^i=\sum_{i=1}^k n_i \frac{p^i-1}{p-1} \\ =\frac{1}{p-1}\left(\sum_{i=1}^k n_ip^i-\sum_{i=1}^k n_i \right)=\frac{1}{p-1}\left(n-\sum_{i=0}^k n_i \right) vp(n!)=i=1kpin=i=1knknk1ni=i=1kj=iknjpji=j=1knji=0j1pi=i=1knip1pi1=p11(i=1knipii=1kni)=p11(ni=0kni)
m = ( a k a k − 1 ⋯ a 0 ‾ ) p , n − m = ( b k b k − 1 ⋯ b 0 ‾ ) p m=(\overline{a_ka_{k-1}\cdots a_0})_p, n-m=(\overline{b_kb_{k-1}\cdots b_0})_p m=(akak1a0)p,nm=(bkbk1b0)p,则
v p ( C n m ) = v p ( n ! ) − v p ( m ! ) − v p ( ( n − m ) ! ) = 1 p − 1 ∑ i = 0 k ( a i + b i − n i ) v_p(C_n^m)=v_p(n!)-v_p(m!)-v_p((n-m)!)=\frac{1}{p-1}\sum_{i=0}^k (a_i+b_i-n_i) vp(Cnm)=vp(n!)vp(m!)vp((nm)!)=p11i=0k(ai+bini)

故此式即 ( n − m ) + m (n-m)+m (nm)+m p p p 进制下的进位次数。

推论

n = ( n k n k − 1 ⋯ n 0 ‾ ) p , m = ( m k m k − 1 ⋯ m 0 ‾ ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p, m=(\overline{m_km_{k-1}\cdots m_0})_p n=(nknk1n0)p,m=(mkmk1m0)p k k k 使 n n n 不含前导 0,对 m m m 无约束),则
max ⁡ 0 ≤ l ≤ m v p ( C n l ) = { 0 n = p k + 1 − 1 0 m ≤ p i 0 − 1 max ⁡ { i − i 0 + 1 ∣ i 0 ≤ i < k , m ≥ n i n i − 1 ⋯ n i 0 + 1 ( n i 0 + 1 ) ‾ p i 0 } otherwise \max_{0\le l\le m} v_p(C_n^l)= \begin{cases} 0 & n=p^{k+1}-1 \\ 0 & m\le p^{i_0}-1 \\ \max\{i-i_0+1 | i_0\le i< k, m\ge \overline{n_i n_{i-1} \cdots n_{i_0+1}(n_{i_0}+1)}p^{i_0}\} & \text{otherwise} \end{cases} 0lmmaxvp(Cnl)=00max{ii0+1i0i<k,mnini1ni0+1(ni0+1)pi0}n=pk+11mpi01otherwise

这里当 n ≠ p k + 1 − 1 n\not= p^{k+1}-1 n=pk+11 时,定义 i 0 = min ⁡ { i ∣ n i ≠ p − 1 } i_0=\min\{i \mid n_i\not= p-1\} i0=min{ini=p1}

人话:先特判掉两种情况;我们枚举每种进位次数,找到最小的 l l l 使得 ( n − l ) + l (n-l)+l (nl)+l 达到这个进位次数,而 i 0 i_0 i0 右边的 p − 1 p-1 p1 是不能进的,所以找到第一个能进的 i 0 i_0 i0,然后下边界就是 m i m i − 1 ⋯ m i 0 + 1 ( m i 0 + 1 ) ‾ p i 0 \overline{m_i m_{i-1} \cdots m_{i_0+1}(m_{i_0}+1)}p^{i_0} mimi1mi0+1(mi0+1)pi0 了。

更近一步,如果我们舍去 m m m 的前导 0,得到 m = ( m t m t − 1 ⋯ m 0 ‾ ) p m=(\overline{m_tm_{t-1} \cdots m_0})_p m=(mtmt1m0)p,则
max ⁡ 0 ≤ l ≤ m v p ( C n l ) = { 0 n = p k + 1 − 1 0 t < i 0 t − i 0 m < ( n t n t − 1 ⋯ n 0 ‾ ) + 1 max ⁡ { q ∣ q ≥ t , ∀ t < j ≤ q , n t = 0 } − i 0 + 1 otherwise \max_{0\le l\le m} v_p(C_n^l)= \begin{cases} 0 & n=p^{k+1}-1 \\ 0 & t<i_0 \\ t-i_0 & m<(\overline{n_tn_{t-1}\cdots n_0})+1 \\ \max\{q | q\ge t, \forall t<j\le q, n_t=0\}-i_0+1 & \text{otherwise} \end{cases} 0lmmaxvp(Cnl)=00ti0max{qqt,t<jq,nt=0}i0+1n=pk+11t<i0m<(ntnt1n0)+1otherwise

证明

n = ( n k n k − 1 ⋯ n 0 ‾ ) p , m = ( m t m t − 1 ⋯ m 0 ‾ ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p, m=(\overline{m_tm_{t-1}\cdots m_0})_p n=(nknk1n0)p,m=(mtmt1m0)p k , t k,t k,t 都是使得 n , m n,m n,m 不含前导 0)

首先特判掉 m = 0 m=0 m=0 的情况。

n = p k + 1 − 1 n=p^{k+1}-1 n=pk+11 max ⁡ v p ( l ) = v p ( n + 1 ) \max v_p(l)=v_p(n+1) maxvp(l)=vp(n+1),此时 RHS = v p ( n + 1 ) − v p ( n + 1 ) = 0 \text{RHS}=v_p(n+1)-v_p(n+1)=0 RHS=vp(n+1)vp(n+1)=0

i 0 = min ⁡ { i ∣ n i ≠ p − 1 } i_0=\min\{i | n_i\not= p-1\} i0=min{ini=p1},则 v p ( n + 1 ) = i 0 v_p(n+1)=i_0 vp(n+1)=i0

i 1 = min ⁡ { i ∣ ( n + 1 ) i ≠ ( n − m + 1 ) i } i_1=\min\{i | (n+1)_i\not= (n-m+1)_i\} i1=min{i(n+1)i=(nm+1)i},则 max ⁡ v p ( l ) = i 1 \max v_p(l)=i_1 maxvp(l)=i1

t < i 0 t<i_0 t<i0 max ⁡ v p ( l ) = i 0 \max v_p(l)=i_0 maxvp(l)=i0,此时 RHS = 0 \text{RHS}=0 RHS=0

m < ( n t n t − 1 ⋯ n 0 ‾ ) + 1 m<(\overline{n_tn_{t-1}\cdots n_0})+1 m<(ntnt1n0)+1,事实上我们翻译一下发现是 ( n + 1 ) − m (n+1)-m (n+1)m t + 1 t+1 t+1 没退位,所以 max ⁡ v p ( l ) = t \max v_p(l)=t maxvp(l)=t,而 v p ( n + 1 ) = i 0 v_p(n+1)=i_0 vp(n+1)=i0,故 RHS = t − i 0 \text{RHS}=t-i_0 RHS=ti0

otherwise \text{otherwise} otherwise 时,退位将会一直往上退,直到到达一个非 0 点,因此是 max ⁡ { q ∣ q ≥ t , ∀ t < j ≤ q , n t = 0 } + 1 \max\{q | q\ge t, \forall t<j\le q, n_t=0\}+1 max{qqt,t<jq,nt=0}+1。而 v p ( n + 1 ) = i 0 v_p(n+1)=i_0 vp(n+1)=i0,故 RHS = t − i 0 \text{RHS}=t-i_0 RHS=ti0

我们证明了 v p ( lcm ( C n 0 , C n 1 , ⋯   , C n m ) ) = v p ( lcm ( n − m + 1 , n − m + 2 , ⋯   , n + 1 ) n + 1 ) v_p(\text{lcm} (C_n^0, C_n^1, \cdots, C_n^m))=v_p(\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1}) vp(lcm(Cn0,Cn1,,Cnm))=vp(n+1lcm(nm+1,nm+2,,n+1)),故我们终于证明了原结论!
lcm ( C n 0 , C n 1 , ⋯   , C n m ) = lcm ( n − m + 1 , n − m + 2 , ⋯   , n + 1 ) n + 1 \text{lcm}(C_n^0,C_n^1,\cdots,C_n^m)=\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1} lcm(Cn0,Cn1,,Cnm)=n+1lcm(nm+1,nm+2,,n+1)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言都有相应的实现方式,可以应用于各种不同的场景。C语言的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言用于封装代码的单元,可以实现代码的复用和模块化。C语言定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言用于存储同类型数据的结构,可以通过索引访问和修改数组的元素。字符串是C语言用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值