图像检索
文章平均质量分 70
sunny*&*
这个作者很懒,什么都没留下…
展开
-
哈希算法之pHash算法
1.pHash算法pHash中文叫感知哈希算法,通过离散余弦变换(DCT)降低图片频率,相比aHash有更好鲁棒性。基本原理:(1)缩小尺寸。将图片缩小为32*32大小。(2)灰度化处理。(3)计算DCT,并选取左上角8*8的矩阵。DCT是一种特殊的傅立叶变换,将图片从像素域变换为频率域,并且DCT矩阵从左上角到右下角代表越来越高频率的系数,但是除左上角外,其他地方的系数为0或接近0,因此只保留左上角的低频区域。(4)计算DCT均值。(5)哈希值计算。将每个DCT值,与平均值进行比较。大于或转载 2021-07-07 17:50:01 · 4768 阅读 · 0 评论 -
哈希算法之dHash算法
1.dHash算法dHash中文叫差异哈希算法,在对图片进行哈希转换时,通过左右两个像素大小的比较,得到最终哈希序列。基本原理:(1)缩小尺寸。将图片缩小为9*8大小,此时照片有72个像素点。(2)灰度化处理。(3)计算差异值,获得最后哈希值(与aHash主要区别处)。比较每行左右两个像素,如果左边的像素比右边的更亮(左边像素值大于右边像素值),则记录为1,否则为0。因为每行有9个像素,左右两个依次比较可得出8个值,所以8行像素共可以得出64个值,因此此时哈希值为长度是64的0-1序列。(4)转载 2021-07-07 17:37:18 · 2397 阅读 · 0 评论 -
哈希算法之aHash算法
aHash、pHash、dHash是常用的图像相似度识别算法,原理简单,实现方便,个人把这三个算法作为学习图片相似度识别的入门算法。本次起,从aHash开始,对三个算法的基本原理和实践代码进行梳理。aHash算法Hash算法进行图片相似度识别的本质,就是将图片进行Hash转化,生成一组二进制数字,然后通过比较不同图片的Hash值距离找出相似图片。aHash中文叫平均哈希算法,顾名思义,在进行转化过程中将用到像素均值。1.基本原理:(1)缩小尺寸。这样做会去除图片的细节,只保留结构、明暗等基本信息,转载 2021-07-07 17:31:22 · 1470 阅读 · 0 评论 -
大规模图像检索的深度哈希方法简介
传统的图像检索过程,先通过人工对图像进行文字标注,再利用关键字来检索图像,这种依据图像描述的字符匹配程度提供检索结果的方法,称为“以字找图”(text-based image retrieval),既耗时又主观多义。如今每一秒都有数百万图片通过各种渠道上传到各种大规模存储设备中。给定一张查询图片,快速从百万量级的图像数据库中通过图像特征来找出内容相近的一定数量的图片,这种任务被称为“基于内容的图像检索”(content-based image retrieval (CBIR)),是目前非常流行的研究方向。转载 2021-07-07 17:09:15 · 3402 阅读 · 0 评论 -
搭建以图搜图检索系统
引言当您听到“以图搜图”时,是否首先想到了百度、Google 等搜索引擎的以图搜图功能呢?事实上,您完全可以搭建一个属于自己的以图搜图系统:自己建立图片库;自己选择一张图片到库中进行搜索,并得到与其相似的若干图片。Milvus 作为一款针对海量特征向量的相似性检索引擎,旨在助力分析日益庞大的非结构化数据,挖掘其背后蕴含的巨大价值。为了让 Milvus 能够应用于相似图片检索的场景,我们基于 Milvus 和图片特征提取模型 VGG 设计了一个以图搜图系统。正文分为数据准备、系统概览、 VGG 模型、A转载 2021-07-07 15:22:42 · 2154 阅读 · 0 评论