多重背包问题

 收藏
 关注
有N种物品,每种物品的数量为C1,C2......Cn。从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的种类,W为背包的容量。(1 <= N <= 100,1 <= W <= 50000)
第2 - N + 1行,每行3个整数,Wi,Pi和Ci分别是物品体积、价值和数量。(1 <= Wi, Pi <= 10000, 1 <= Ci <= 200)
Output
输出可以容纳的最大价值。
Input示例
3 6
2 2 5
3 3 8
1 4 1
Output示例
9
解题思路:
  背包2比0.1背包多了个背包数量,最简单的思路是将n数量的背包分解为n个背包,但时间复杂度太高;可以将数量超过1的背包分解为1,2,4,8,16·····不足的时候按剩余量计算,这样分解可以凑够所有未分解前的情况。代码是从0.1背包基础上直接改的:
#include <iostream>
#include <cmath>
using namespace std;
long long int c[801][20001],a[801],b[801],d[101];
int main()
{
    long long int m,n,i,j,s,v,t;
    cin>>m>>n;
    s=0;
    v=m;
    for(i=1;i<=m;i++){cin>>a[i]>>b[i]>>d[i];}
    for(i=1;i<=v;i++)
    {
        if(d[i]==1)continue;
        else d[i]=d[i]-1;
        t=1;
        while(1)
        {
            if(d[i]<=pow(2,t)){m++;a[m]=d[i]*a[i];b[m]=d[i]*b[i];break;}
            else
            {
                m++;
                a[m]=pow(2,t)*a[i];
                b[m]=pow(2,t)*b[i];
                d[i]-=pow(2,t);
                t++;
            }
        }//分解过程
    }
    for(i=1;i<=m;i++)c[i][0];
    for(i=0;i<a[m];i++)c[m][i]=0;
    for(i=a[m];i<=n;i++)c[m][i]=b[m];
    for(i=m-1;i>=1;i--)
        for(j=1;j<=n;j++)
        {
            if(j>=a[i])
            c[i][j]=max(c[i+1][j],c[i+1][j-a[i]]+b[i]);
            else c[i][j]=c[i+1][j];
            if(c[i][j]>=s)s=c[i][j];
        }
        /*for(i=1;i<=m;i++)
        {
            for(j=0;j<=n;j++)
                cout<<c[i][j]<<" ";
            cout<<endl;
        }*/
        cout<<s<<endl;
        return 0;
}
注意数组大小


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值