有N种物品,每种物品的数量为C1,C2......Cn。从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的种类,W为背包的容量。(1 <= N <= 100,1 <= W <= 50000) 第2 - N + 1行,每行3个整数,Wi,Pi和Ci分别是物品体积、价值和数量。(1 <= Wi, Pi <= 10000, 1 <= Ci <= 200)
Output
输出可以容纳的最大价值。
Input示例
3 6 2 2 5 3 3 8 1 4 1
Output示例
9
解题思路:
背包2比0.1背包多了个背包数量,最简单的思路是将n数量的背包分解为n个背包,但时间复杂度太高;可以将数量超过1的背包分解为1,2,4,8,16·····不足的时候按剩余量计算,这样分解可以凑够所有未分解前的情况。代码是从0.1背包基础上直接改的:
#include <iostream>
#include <cmath>
using namespace std;
long long int c[801][20001],a[801],b[801],d[101];
int main()
{
long long int m,n,i,j,s,v,t;
cin>>m>>n;
s=0;
v=m;
for(i=1;i<=m;i++){cin>>a[i]>>b[i]>>d[i];}
for(i=1;i<=v;i++)
{
if(d[i]==1)continue;
else d[i]=d[i]-1;
t=1;
while(1)
{
if(d[i]<=pow(2,t)){m++;a[m]=d[i]*a[i];b[m]=d[i]*b[i];break;}
else
{
m++;
a[m]=pow(2,t)*a[i];
b[m]=pow(2,t)*b[i];
d[i]-=pow(2,t);
t++;
}
}//分解过程
}
for(i=1;i<=m;i++)c[i][0];
for(i=0;i<a[m];i++)c[m][i]=0;
for(i=a[m];i<=n;i++)c[m][i]=b[m];
for(i=m-1;i>=1;i--)
for(j=1;j<=n;j++)
{
if(j>=a[i])
c[i][j]=max(c[i+1][j],c[i+1][j-a[i]]+b[i]);
else c[i][j]=c[i+1][j];
if(c[i][j]>=s)s=c[i][j];
}
/*for(i=1;i<=m;i++)
{
for(j=0;j<=n;j++)
cout<<c[i][j]<<" ";
cout<<endl;
}*/
cout<<s<<endl;
return 0;
}
注意数组大小