#include<stdio.h>
#include<stdlib.h>
#define MAXVEX 10
#define MAXEDGE 20
#define INFINITY 65535
typedef struct{
int vexs[MAXVEX];
int arc[MAXVEX][MAXVEX];
int numVertexes,numEdges;
}MGraph;
typedef struct {
int begin;
int end;
int weight;
}Edge;
void creatMGraph(MGraph *G);
void changeEdge(MGraph G,Edge *edges);
void MiniSpanTree_Kruskal(MGraph G);
int Find(int *parent, int f);
void Sort(Edge *edges,int n);
void Sort(Edge *edges,int n)
{
for(int i = 0;i<n;i++)
{
for(int j = i+1;j<n;j++)
{
if(edges[i].weight > edges[j].weight)
{
int temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp;
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp;
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp;
}
}
}
}
void changeEdge(MGraph G,Edge *edges) //将邻接矩阵G转化为边集数组edges并按权由小到大排序的代码
{
int count = 0;
for(int i = 0;i<G.numVertexes;i++)
{
for(int j = 0;j<G.numVertexes;j++)
{
if(G.arc[i][j]!=INFINITY)
{
int flag = 1;
for(int p = 0;p<count;p++)
{
if(edges[p].begin == j && edges[p].end == i && edges[p].weight == G.arc[i][j]) //这里倒过来检查是因为
{ //邻接矩阵是对称阵
flag = 0;
break;
}
}
if(flag)
{
edges[count].begin = i;
edges[count].end = j;
edges[count].weight = G.arc[i][j];
count++;
}
}
}
}
Sort(edges,count);
}
void creatMGraph(MGraph *G)
{
scanf("%d%d",&G->numVertexes,&G->numEdges);
printf("%d %d\n",G->numVertexes,G->numEdges);
for(int i = 0;i<G->numVertexes;i++)
scanf("%d",&G->vexs[i]);
for(int i = 0;i<G->numVertexes;i++)
printf("%d ",G->vexs[i]);
printf("\n");
for(int i = 0;i<G->numVertexes;i++)
for(int j = 0;j<G->numVertexes;j++)
G->arc[i][j] = INFINITY;
int i,j,w;
for(int k = 0;k<G->numEdges;k++)
{
scanf("%d%d%d",&i,&j,&w);
G->arc[i][j] = w;
G->arc[j][i] = G->arc[i][j];
}
//printf("\n");
for(int i = 0;i<G->numVertexes;i++)
{
for(int j = 0;j<G->numVertexes;j++)
{
if(G->arc[i][j]!=INFINITY)
printf("%2d ",G->arc[i][j]);
else
printf("& ");
}
printf("\n");
}
printf("\n");
}
void MiniSpanTree_Kruskal(MGraph G)
{
int i, n, m;
Edge edges[MAXEDGE]; //定义边集数组
int parent[MAXVEX]; //定义一数组用来判断边与边是否形成环路
changeEdge(G, edges); //将邻接矩阵G转化为边集数组edges并按权由小到大排序的代码
for (i = 0; i < G.numVertexes; i++)
parent[i] = 0; //初始化数组值为 0
for (i = 0; i < G.numEdges; i++) //循环每一条边
{
n = Find(parent, edges[i].begin);
m = Find(parent, edges[i].end);
if (n != m) //假如 n != m,说明此边没有与现有生成树形成环路
{
parent[n] = m; //将此边的结尾顶点放入下标为起点的parent中
//表示此顶点已经在生成树集合中
printf("(%d,%d) %d ", edges[i].begin, edges[i].end, edges[i].weight);
}
}
}
int Find(int *parent, int f) //查找连线顶点的尾部下标
{
while (parent[f] > 0)
f = parent[f];
return f;
}
int main(void)
{
freopen("最小生成树测试数据.txt","r",stdin);
MGraph *G = (MGraph *)malloc(sizeof(MGraph));
creatMGraph(G);
MiniSpanTree_Kruskal(*G);
for(int i = 0;i<G->numVertexes;i++)
free(G->arc[i]);
free(G->vexs);
free(G);
return 0;
}