- 博客(11)
- 收藏
- 关注
原创 week5 现代卷积神经网络笔记 (动手学深度学习)
AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。其次,AlexNet使用ReLU而不是sigmoid作为其激活函数。
2024-10-19 17:47:15 497
原创 week 4卷积神经网络笔记(动手学深度学习)
对全连接层使用平移不变性和局部性得到卷积层v是权重矩阵平移不变性也就是说无论 (i,j)的值怎么变化,v权重都不会改变(过滤器不会变)局部性就是我每次处理(i,j)点我只会看离(i,j)很近的一些点也就是说我每次处理(i,j)时,无论(i,j)取什么值,我只会看他周围固定区域的数据。
2024-10-12 11:17:28 259
原创 week 3 多层感知机
给定输入x(向量),权重w(向量),和偏移b(标量),感知机输出:w、x做内积加上偏移b后代入sigma函数。感知机用于处理二分类问题。感知机输出的是离散的类,线性回归输出的是一个实数。softmax可以进行多分类问题,感知机只能处理二分类问题。感知机不能处理XOR函数。
2024-10-06 10:47:06 773
原创 week 2 线性回归、softmax回归 (动手学深度学习)
算法的步骤如下:(1)初始化模型参数的值,如随机初始化;(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。可以调整但不在训练过程中更新的参数称为超参数调参是选择超参数的过程。
2024-09-22 17:04:52 1016
原创 week1 数据处理 (动手学深度学习)
张量表示一个由数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。下面是一些常用的操作。
2024-09-14 11:50:07 392
原创 week1 安装cpu版本的Pytorch(动手学深度学习)
李沐老师的动手学深度学习一书中要先搭建Pytorch环境(Gpu版本),Gpu版本的Pytorch需要NIVIDIA(英伟达)的CUDA,我的电脑GPU不是英伟达的,无法搭建GPU版本的Pytorch,只能搭建Cpu版本的Pytorch我们首先需要先查看一下自己的电脑的GPU是不是英伟达(NIVIDIA)windows系统下搜索:设备管理器–>点击设备管理器–>点击显示适配器可以看到我的GPU不是NIVIDIA的我们接下来开始搭建cpu版本的Pytorch。
2024-09-14 11:16:15 526
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人