树
每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交的子树
二叉树
二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。
- 在二叉树的第i层上最多有2^(i-1)个结点(i>=1)。
- 高度为k的二叉树,最多有2^k-1个结点(k>=0)。
- 对任何一棵二叉树,如果其叶结点有n个,度为2的非叶子结点有m个,则n = m + 1。
- 具有n个结点的完全二叉树的高度为logn + 1
对于有n个结点的完全二叉树,按层次对结点进行编号(从上到下,从左到右),对于任意编号为i的结点:
- 如果i=1,则节点i是二叉树的根节点
- 如果i>1,则其父结点为i/2向下取整
- 如果2i <=n,则节点i的左孩子为2i
- 如果2i > n ,则节点i无左孩子
- 如果2i+1<=n,则i的右孩子为2i+1
- 如果2i+1>n,则节点i无右孩子
满二叉树
如果二叉树中所有分支结点的度数都为2,并且叶子结点都在统一层次上,则二叉树为满二叉树。
- 满二叉树的高度为k,节点数为n,则n = 2**k-1
- 满二叉树是完全二叉树,而完全二叉树不一定是满二叉树
完全二叉树
如果一棵具有n个结点的高度为k的二叉树,树的每个结点都与高度为k的满二叉树中编号为1——n的结点一一对应,则二叉树为完全二叉树。
完全二叉树的特性:
- 同样结点数的二叉树,完全二叉树的高度最小
- 完全二叉树的叶子结点仅出现在最下边两层,并且最底层的叶子结点一定出现在左边,倒数第二层的叶子结点一定出现在右边。
- 完全二叉树中度为1的结点只有左孩子。
- 具有个结点的完全二叉树的深度为logn+1