Caffe各层的参数设置(在prototxt文件中设置)
这些参数定义在include/caffe/proto/caffe.proto文件中
如果要查看某种层的参数,请展开本文的目录,点击相应的条目来跳转
syntax= "proto2";
packagecaffe;
//Specifies the shape (dimensions) of a Blob.
messageBlobShape {
repeatedint64 dim = 1 [packed = true];
}
messageBlobProto {
optionalBlobShape shape = 7;
repeatedfloat data = 5 [packed = true];
repeatedfloat diff = 6 [packed = true];
repeateddouble double_data = 8 [packed = true];
repeateddouble double_diff = 9 [packed = true];
//4D dimensions -- deprecated. Use "shape" instead.
optionalint32 num = 1 [default = 0];
optionalint32 channels = 2 [default = 0];
optionalint32 height = 3 [default = 0];
optionalint32 width = 4 [default = 0];
}
//The BlobProtoVector is simply a way to pass multiple blobprotoinstances
//around.
messageBlobProtoVector {
repeatedBlobProto blobs = 1;
}
messageDatum {
optionalint32 channels = 1;
optionalint32 height = 2;
optionalint32 width = 3;
//the actual image data, in bytes
optionalbytes data = 4;
optionalint32 label = 5;
//Optionally, the datum could also hold float data.
repeatedfloat float_data = 6;
//If true data contains an encoded image that need to be decoded
optionalbool encoded = 7 [default = false];
}
messageFillerParameter {
//The filler type.
optionalstring type = 1 [default = 'constant'];
optionalfloat value = 2 [default = 0]; // the value in constant filler
optionalfloat min = 3 [default = 0]; // the min value in uniform filler
optionalfloat max = 4 [default = 1]; // the max value in uniform filler
optionalfloat mean = 5 [default = 0]; // the mean value in Gaussian filler
optionalfloat std = 6 [default = 1]; // the std value in Gaussian filler
//The expected number of non-zero output weights for a given input in
//Gaussian filler -- the default -1 means don't perform sparsification.
optionalint32 sparse = 7 [default = -1];
//Normalize the filler variance by fan_in, fan_out, or their average.
//Applies to 'xavier' and 'msra' fillers.
enumVarianceNorm {
FAN_IN= 0;
FAN_OUT= 1;
AVERAGE= 2;
}
optionalVarianceNorm variance_norm = 8 [default = FAN_IN];
}
messageNetParameter {
optionalstring name = 1; // consider giving the network a name
//DEPRECATED. See InputParameter. The input blobs to the network.
repeatedstring input = 3;
//DEPRECATED. See InputParameter. The shape of the input blobs.
repeatedBlobShape input_shape = 8;
//4D input dimensions -- deprecated. Use "input_shape"instead.
//If specified, for each input blob there should be four
//values specifying the num, channels, height and width of the inputblob.
//Thus, there should be a total of (4 * #input) numbers.
repeatedint32 input_dim = 4;
//Whether the network will force every layer to carry out backwardoperation.
//If set False, then whether to carry out backward is determined
//automatically according to the net structure and learning rates.
optionalbool force_backward = 5 [default = false];
//The current "state" of the network, including the phase,level, and stage.
//Some layers may be included/excluded depending on this state and thestates
//specified in the layers' include and exclude fields.
optionalNetState state = 6;
//Print debugging information about results while running Net::Forward,
//Net::Backward, and Net::Update.
optionalbool debug_info = 7 [default = false];
//The layers that make up the net. Each of their configurations,including
//connectivity and behavior, is specified as a LayerParameter.
repeatedLayerParameter layer = 100; // ID 100 so layers are printed last.
//DEPRECATED: use 'layer' instead.
repeatedV1LayerParameter layers = 2;
}
//NOTE
//Update the next available ID when you add a new SolverParameterfield.
//
//SolverParameter next available ID: 42 (last added: layer_wise_reduce)
messageSolverParameter {
//
//Specifying the train and test networks
//
//Exactly one train net must be specified using one of the followingfields:
// train_net_param, train_net, net_param, net
//One or more test nets may be specified using any of the followingfields:
// test_net_param, test_net, net_param, net
//If more than one test net field is specified (e.g., both net and
//test_net are specified), they will be evaluated in the field ordergiven
//above: (1) test_net_param, (2) test_net, (3) net_param/net.
//A test_iter must be specified for each test_net.
//A test_level and/or a test_stage may also be specified for eachtest_net.
//
//Proto filename for the train net, possibly combined with one or more
//test nets.
optionalstring net = 24;
//Inline train net param, possibly combined with one or more test nets.
optionalNetParameter net_param = 25;
optionalstring train_net = 1; // Proto filename for the train net.
repeatedstring test_net = 2; // Proto filenames for the test nets.
optionalNetParameter train_net_param = 21; // Inline train net params.
repeatedNetParameter test_net_param = 22; // Inline test net params.
//The states for the train/test nets. Must be unspecified or
//specified once per net.
//
//By default, train_state will have phase = TRAIN,
//and all test_state's will have phase = TEST.
//Other defaults are set according to the NetState defaults.
optionalNetState train_state = 26;
repeatedNetState test_state = 27;
//The number of iterations for each test net.
repeatedint32 test_iter = 3;
//The number of iterations between two testing phases.
optionalint32 test_interval = 4 [default = 0];
optionalbool test_compute_loss = 19 [default = false];
//If true, run an initial test pass before the first iteration,
//ensuring memory availability and printing the starting value of theloss.
optionalbool test_initialization = 32 [default = true];
optionalfloat base_lr = 5; // The base learning rate
//the number of iterations between displaying info. If display = 0, noinfo
//will be displayed.
optionalint32 display = 6;
//Display the loss averaged over the last average_loss iterations
optionalint32 average_loss = 33 [default = 1];
optionalint32 max_iter = 7; // the maximum number of iterations
//accumulate gradients over `iter_size` x `batch_size` instances
optionalint32 iter_size = 36 [default = 1];
//The learning rate decay policy. The currently implemented learningrate
//policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform stepsdefined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, tobe
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^(power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
//where base_lr, max_iter, gamma, step, stepvalue and power are defined
//in the solver parameter protocol buffer, and iter is the currentiteration.
optionalstring lr_policy = 8;
optionalfloat gamma = 9; // The parameter to compute the learning rate.
optionalfloat power = 10; // The parameter to compute the learning rate.
optionalfloat momentum = 11; // The momentum value.
optionalfloat weight_decay = 12; // The weight decay.
//regularization types supported: L1 and L2
//controlled by weight_decay
optionalstring regularization_type = 29 [default = "L2"];
//the stepsize for learning rate policy "step"
optionalint32 stepsize = 13;
//the stepsize for learning rate policy "multistep"
repeatedint32 stepvalue = 34;
//Set clip_gradients to >= 0 to clip parameter gradients to that L2norm,
//whenever their actual L2 norm is larger.
optionalfloat clip_gradients = 35 [default = -1];
optionalint32 snapshot = 14 [default = 0]; // The snapshot interval
optionalstring snapshot_prefix = 15; // The prefix for the snapshot.
//whether to snapshot diff in the results or not. Snapshotting diffwill help
//debugging but the final protocol buffer size will be much larger.
optionalbool snapshot_diff = 16 [default = false];
enumSnapshotFormat {
HDF5= 0;
BINARYPROTO= 1;
}
optionalSnapshotFormat snapshot_format = 37 [default = BINARYPROTO];
//the mode solver will use: 0 for CPU and 1 for GPU. Use GPU indefault.
enumSolverMode {
CPU= 0;
GPU= 1;
}
optionalSolverMode solver_mode = 17 [default = GPU];
//the device_id will that be used in GPU mode. Use device_id = 0 indefault.
optionalint32 device_id = 18 [default = 0];
//If non-negative, the seed with which the Solver will initialize theCaffe
//random number generator -- useful for reproducible results.Otherwise,
//(and by default) initialize using a seed derived from the systemclock.
optionalint64 random_seed = 20 [default = -1];
//type of the solver
optionalstring type = 40 [default = "SGD"];
//numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
optionalfloat delta = 31 [default = 1e-8];
//parameters for the Adam solver
optionalfloat momentum2 = 39 [default = 0.999];
//RMSProp decay value
//MeanSquare(t) = rms_decay*MeanSquare(t-1) +(1-rms_decay)*SquareGradient(t)
optionalfloat rms_decay = 38 [default = 0.99];
//If true, print information about the state of the net that may helpwith
//debugging learning problems.
optionalbool debug_info = 23 [default = false];
//If false, don't save a snapshot after training finishes.
optionalbool snapshot_after_train = 28 [default = true];
//DEPRECATED: old solver enum types, use string instead
enumSolverType {
SGD= 0;
NESTEROV= 1;
ADAGRAD= 2;
RMSPROP= 3;
ADADELTA= 4;
ADAM= 5;
}
//DEPRECATED: use type instead of solver_type
optionalSolverType solver_type = 30 [default = SGD];
//Overlap compute and communication for data parallel training
optionalbool layer_wise_reduce = 41 [default = true];
}
//A message that stores the solver snapshots
messageSolverState {
optionalint32 iter = 1; // The current iteration
optionalstring learned_net = 2; // The file that stores the learned net.
repeatedBlobProto history = 3; // The history for sgd solvers
optionalint32 current_step = 4 [default = 0]; // The current step forlearning rate
}
enumPhase {
TRAIN= 0;
TEST= 1;
}
messageNetState {
optionalPhase phase = 1 [default = TEST];
optionalint32 level = 2 [default = 0];
repeatedstring stage = 3;
}
messageNetStateRule {
//Set phase to require the NetState have a particular phase (TRAIN orTEST)
//to meet this rule.
optionalPhase phase = 1;
//Set the minimum and/or maximum levels in which the layer should beused.
//Leave undefined to meet the rule regardless of level.
optionalint32 min_level = 2;
optionalint32 max_level = 3;
//Customizable sets of stages to include or exclude.
//The net must have ALL of the specified stages and NONE of thespecified
//"not_stage"s to meet the rule.
//(Use multiple NetStateRules to specify conjunctions of stages.)
repeatedstring stage = 4;
repeatedstring not_stage = 5;
}
//Specifies training parameters (multipliers on global learningconstants,
//and the name and other settings used for weight sharing).
messageParamSpec {
//The names of the parameter blobs -- useful for sharing parametersamong
//layers, but never required otherwise. To share a parameter betweentwo
//layers, give it a (non-empty) name.
optionalstring name = 1;
//Whether to require shared weights to have the same shape, or just thesame
//count -- defaults to STRICT if unspecified.
optionalDimCheckMode share_mode = 2;
enumDimCheckMode {
//STRICT (default) requires that num, channels, height, width eachmatch.
STRICT= 0;
//PERMISSIVE requires only the count (num*channels*height*width) tomatch.
PERMISSIVE= 1;
}
//The multiplier on the global learning rate for this parameter.
optionalfloat lr_mult = 3 [default = 1.0];
//The multiplier on the global weight decay for this parameter.
optionalfloat decay_mult = 4 [default = 1.0];
}
//NOTE
//Update the next available ID when you add a new LayerParameter field.
//
//LayerParameter next available layer-specific ID: 147 (last added:recurrent_param)
messageLayerParameter {
optionalstring name = 1; // the layer name
optionalstring type = 2; // the layer type
repeatedstring bottom = 3; // the name of each bottom blob
repeatedstring top = 4; // the name of each top blob
//The train / test phase for computation.
optionalPhase phase = 10;
//The amount of weight to assign each top blob in the objective.
//Each layer assigns a default value, usually of either 0 or 1,
//to each top blob.
repeatedfloat loss_weight = 5;
//Specifies training parameters (multipliers on global learningconstants,
//and the name and other settings used for weight sharing).
repeatedParamSpec param = 6;
//The blobs containing the numeric parameters of the layer.
repeatedBlobProto blobs = 7;
//Specifies whether to backpropagate to each bottom. If unspecified,
//Caffe will automatically infer whether each input needsbackpropagation
//to compute parameter gradients. If set to true for some inputs,
//backpropagation to those inputs is forced; if set false for someinputs,
//backpropagation to those inputs is skipped.
//
//The size must be either 0 or equal to the number of bottoms.
repeatedbool propagate_down = 11;
//Rules controlling whether and when a layer is included in thenetwork,
//based on the current NetState. You may specify a non-zero number ofrules
//to include OR exclude, but not both. If no include or exclude rulesare
//specified, the layer is always included. If the current NetStatemeets
//ANY (i.e., one or more) of the specified rules, the layer is
//included/excluded.
repeatedNetStateRule include = 8;
repeatedNetStateRule exclude = 9;
//Parameters for data pre-processing.
optionalTransformationParameter transform_param = 100;
//Parameters shared by loss layers.
optionalLossParameter loss_param = 101;
//Layer type-specific parameters.
//
//Note: certain layers may have more than one computational engine
//for their implementation. These layers include an Engine type and
//engine parameter for selecting the implementation.
//The default for the engine is set by the ENGINE switch atcompile-time.
optionalAccuracyParameter accuracy_param = 102;
optionalArgMaxParameter argmax_param = 103;
optionalBatchNormParameter batch_norm_param = 139;
optionalBiasParameter bias_param = 141;
optionalConcatParameter concat_param = 104;
optionalContrastiveLossParameter contrastive_loss_param = 105;
optionalConvolutionParameter convolution_param = 106;
optionalCropParameter crop_param = 144;
optionalDataParameter data_param = 107;
optionalDropoutParameter dropout_param = 108;
optionalDummyDataParameter dummy_data_param = 109;
optionalEltwiseParameter eltwise_param = 110;
optionalELUParameter elu_param = 140;
optionalEmbedParameter embed_param = 137;
optionalExpParameter exp_param = 111;
optionalFlattenParameter flatten_param = 135;
optionalHDF5DataParameter hdf5_data_param = 112;
optionalHDF5OutputParameter hdf5_output_param = 113;
optionalHingeLossParameter hinge_loss_param = 114;
optionalImageDataParameter image_data_param = 115;
optionalInfogainLossParameter infogain_loss_param = 116;
optionalInnerProductParameter inner_product_param = 117;
optionalInputParameter input_param = 143;
optionalLogParameter log_param = 134;
optionalLRNParameter lrn_param = 118;
optionalMemoryDataParameter memory_data_param = 119;
optionalMVNParameter mvn_param = 120;
optionalParameterParameter parameter_param = 145;
optionalPoolingParameter pooling_param = 121;
optionalPowerParameter power_param = 122;
optionalPReLUParameter prelu_param = 131;
optionalPythonParameter python_param = 130;
optionalRecurrentParameter recurrent_param = 146;
optionalReductionParameter reduction_param = 136;
optionalReLUParameter relu_param = 123;
optionalReshapeParameter reshape_param = 133;
optionalScaleParameter scale_param = 142;
optionalSigmoidParameter sigmoid_param = 124;
optionalSoftmaxParameter softmax_param = 125;
optionalSPPParameter spp_param = 132;
optionalSliceParameter slice_param = 126;
optionalTanHParameter tanh_param = 127;
optionalThresholdParameter threshold_param = 128;
optionalTileParameter tile_param = 138;
optionalWindowDataParameter window_data_param = 129;
}
//Message that stores parameters used to apply transformation
//to the data layer's data
messageTransformationParameter {
//For data pre-processing, we can do simple scaling and subtracting the
//data mean, if provided. Note that the mean subtraction is alwayscarried
//out before scaling.
optionalfloat scale = 1 [default = 1];
//Specify if we want to randomly mirror data.
optionalbool mirror = 2 [default = false];
//Specify if we would like to randomly crop an image.
optionaluint32 crop_size = 3 [default = 0];
//mean_file and mean_value cannot be specified at the same time
optionalstring mean_file = 4;
//if specified can be repeated once (would subtract it from all thechannels)
//or can be repeated the same number of times as channels
//(would subtract them from the corresponding channel)
repeatedfloat mean_value = 5;
//Force the decoded image to have 3 color channels.
optionalbool force_color = 6 [default = false];
//Force the decoded image to have 1 color channels.
optionalbool force_gray = 7 [default = false];
}
//Message that stores parameters shared by loss layers
messageLossParameter {
//If specified, ignore instances with the given label.
optionalint32 ignore_label = 1;
//How to normalize the loss for loss layers that aggregate acrossbatches,
//spatial dimensions, or other dimensions. Currently only implementedin
//SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
enumNormalizationMode {
//Divide by the number of examples in the batch times spatialdimensions.
//Outputs that receive the ignore label will NOT be ignored incomputing
//the normalization factor.
FULL= 0;
//Divide by the total number of output locations that do not take the
//ignore_label. If ignore_label is not set, this behaves like FULL.
VALID= 1;
//Divide by the batch size.
BATCH_SIZE= 2;
//Do not normalize the loss.
NONE= 3;
}
//For historical reasons, the default normalization for
//SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
optionalNormalizationMode normalization = 3 [default = VALID];
//Deprecated. Ignored if normalization is specified. If normalization
//is not specified, then setting this to false will be equivalent to
//normalization = BATCH_SIZE to be consistent with previous behavior.
optionalbool normalize = 2;
}
//Messages that store parameters used by individual layer types follow,in
//alphabetical order.
messageAccuracyParameter {
//When computing accuracy, count as correct by comparing the true labelto
//the top k scoring classes. By default, only compare to the topscoring
//class (i.e. argmax).
optionaluint32 top_k = 1 [default = 1];
//The "label" axis of the prediction blob, whose argmaxcorresponds to the
//predicted label -- may be negative to index from the end (e.g., -1for the
//last axis). For example, if axis == 1 and the predictions are
//(N x C x H x W), the label blob is expected to contain N*H*W groundtruth
//labels with integer values in {0, 1, ..., C-1}.
optionalint32 axis = 2 [default = 1];
//If specified, ignore instances with the given label.
optionalint32 ignore_label = 3;
}
messageArgMaxParameter {
//If true produce pairs (argmax, maxval)
optionalbool out_max_val = 1 [default = false];
optionaluint32 top_k = 2 [default = 1];
//The axis along which to maximise -- may be negative to index from the
//end (e.g., -1 for the last axis).
//By default ArgMaxLayer maximizes over the flattened trailingdimensions
//for each index of the first / num dimension.
optionalint32 axis = 3;
}
messageConcatParameter {
//The axis along which to concatenate -- may be negative to index fromthe
//end (e.g., -1 for the last axis). Other axes must have the
//same dimension for all the bottom blobs.
//By default, ConcatLayer concatenates blobs along the "channels"axis (1).
optionalint32 axis = 2 [default = 1];
//DEPRECATED: alias for "axis" -- does not support negativeindexing.
optionaluint32 concat_dim = 1 [default = 1];
}
messageBatchNormParameter {
//If false, normalization is performed over the current mini-batch
//and global statistics are accumulated (but not yet used) by a moving
//average.
//If true, those accumulated mean and variance values are used for the
//normalization.
//By default, it is set to false when the network is in the training
//phase and true when the network is in the testing phase.
optionalbool use_global_stats = 1;
//What fraction of the moving average remains each iteration?
//Smaller values make the moving average decay faster, giving more
//weight to the recent values.
//Each iteration updates the moving average @f$S_{t-1}@f$ with the
//current mean @f$ Y_t @f$ by
//@f$ S_t = (1-\beta)Y_t + \beta \cdot S_{t-1} @f$, where @f$ \beta @f$
//is the moving_average_fraction parameter.
optionalfloat moving_average_fraction = 2 [default = .999];
//Small value to add to the variance estimate so that we don't divideby
//zero.
optionalfloat eps = 3 [default = 1e-5];
}
messageBiasParameter {
//The first axis of bottom[0] (the first input Blob) along which toapply
//bottom[1] (the second input Blob). May be negative to index from theend
//(e.g., -1 for the last axis).
//
//For example, if bottom[0] is 4D with shape 100x3x40x60, the output
//top[0] will have the same shape, and bottom[1] may have any of the
//following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
//Furthermore, bottom[1] may have the empty shape (regardless of thevalue of
//"axis") -- a scalar bias.
optionalint32 axis = 1 [default = 1];
//(num_axes is ignored unless just one bottom is given and the bias is
//a learned parameter of the layer. Otherwise, num_axes is determinedby the
//number of axes by the second bottom.)
//The number of axes of the input (bottom[0]) covered by the bias
//parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
//Set num_axes := 0, to add a zero-axis Blob: a scalar.
optionalint32 num_axes = 2 [default = 1];
//(filler is ignored unless just one bottom is given and the bias is
//a learned parameter of the layer.)
//The initialization for the learned bias parameter.
//Default is the zero (0) initialization, resulting in the BiasLayer
//initially performing the identity operation.
optionalFillerParameter filler = 3;
}
messageContrastiveLossParameter {
//margin for dissimilar pair
optionalfloat margin = 1 [default = 1.0];
//The first implementation of this cost did not exactly match the costof
//Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
//legacy_version = false (the default) uses (margin - d)^2 as proposedin the
//Hadsell paper. New models should probably use this version.
//legacy_version = true uses (margin - d^2). This is kept to support /
//reproduce existing models and results
optionalbool legacy_version = 2 [default = false];
}
messageConvolutionParameter {
optionaluint32 num_output = 1; // The number of outputs for the layer
optionalbool bias_term = 2 [default = true]; // whether to have bias terms
//Pad, kernel size, and stride are all given as a single value forequal
//dimensions in all spatial dimensions, or once per spatial dimension.
repeateduint32 pad = 3; // The padding size; defaults to 0
repeateduint32 kernel_size = 4; // The kernel size
repeateduint32 stride = 6; // The stride; defaults to 1
//Factor used to dilate the kernel, (implicitly) zero-filling theresulting
//holes. (Kernel dilation is sometimes referred to by its use in the
//algorithme à trous from Holschneider et al. 1987.)
repeateduint32 dilation = 18; // The dilation; defaults to 1
//For 2D convolution only, the *_h and *_w versions may also be used to
//specify both spatial dimensions.
optionaluint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optionaluint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optionaluint32 kernel_h = 11; // The kernel height (2D only)
optionaluint32 kernel_w = 12; // The kernel width (2D only)
optionaluint32 stride_h = 13; // The stride height (2D only)
optionaluint32 stride_w = 14; // The stride width (2D only)
optionaluint32 group = 5 [default = 1]; // The group size for group conv
optionalFillerParameter weight_filler = 7; // The filler for the weight
optionalFillerParameter bias_filler = 8; // The filler for the bias
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 15 [default = DEFAULT];
//The axis to interpret as "channels" when performingconvolution.
//Preceding dimensions are treated as independent inputs;
//succeeding dimensions are treated as "spatial".
//With (N, C, H, W) inputs, and axis == 1 (the default), we perform
//N independent 2D convolutions, sliding C-channel (or (C/g)-channels,for
//groups g>1) filters across the spatial axes (H, W) of the input.
//With (N, C, D, H, W) inputs, and axis == 1, we perform
//N independent 3D convolutions, sliding (C/g)-channels
//filters across the spatial axes (D, H, W) of the input.
optionalint32 axis = 16 [default = 1];
//Whether to force use of the general ND convolution, even if aspecific
//implementation for blobs of the appropriate number of spatialdimensions
//is available. (Currently, there is only a 2D-specific convolution
//implementation; for input blobs with num_axes != 2, this option is
//ignored and the ND implementation will be used.)
optionalbool force_nd_im2col = 17 [default = false];
}
messageCropParameter {
//To crop, elements of the first bottom are selected to fit thedimensions
//of the second, reference bottom. The crop is configured by
//- the crop `axis` to pick the dimensions for cropping
//- the crop `offset` to set the shift for all/each dimension
//to align the cropped bottom with the reference bottom.
//All dimensions up to but excluding `axis` are preserved, while
//the dimensions including and trailing `axis` are cropped.
//If only one `offset` is set, then all dimensions are offset by thisamount.
//Otherwise, the number of offsets must equal the number of croppedaxes to
//shift the crop in each dimension accordingly.
//Note: standard dimensions are N,C,H,W so the default is a spatialcrop,
//and `axis` may be negative to index from the end (e.g., -1 for thelast
//axis).
optionalint32 axis = 1 [default = 2];
repeateduint32 offset = 2;
}
messageDataParameter {
enumDB {
LEVELDB= 0;
LMDB= 1;
}
//Specify the data source.
optionalstring source = 1;
//Specify the batch size.
optionaluint32 batch_size = 4;
//The rand_skip variable is for the data layer to skip a few datapoints
//to avoid all asynchronous sgd clients to start at the same point. Theskip
//point would be set as rand_skip * rand(0,1). Note that rand_skipshould not
//be larger than the number of keys in the database.
//DEPRECATED. Each solver accesses a different subset of the database.
optionaluint32 rand_skip = 7 [default = 0];
optionalDB backend = 8 [default = LEVELDB];
//DEPRECATED. See TransformationParameter. For data pre-processing, wecan do
//simple scaling and subtracting the data mean, if provided. Note thatthe
//mean subtraction is always carried out before scaling.
optionalfloat scale = 2 [default = 1];
optionalstring mean_file = 3;
//DEPRECATED. See TransformationParameter. Specify if we would like torandomly
//crop an image.
optionaluint32 crop_size = 5 [default = 0];
//DEPRECATED. See TransformationParameter. Specify if we want torandomly mirror
//data.
optionalbool mirror = 6 [default = false];
//Force the encoded image to have 3 color channels
optionalbool force_encoded_color = 9 [default = false];
//Prefetch queue (Increase if data feeding bandwidth varies, within the
//limit of device memory for GPU training)
optionaluint32 prefetch = 10 [default = 4];
}
messageDropoutParameter {
optionalfloat dropout_ratio = 1 [default = 0.5]; // dropout ratio
}
//DummyDataLayer fills any number of arbitrarily shaped blobs withrandom
//(or constant) data generated by "Fillers" (see "messageFillerParameter").
messageDummyDataParameter {
//This layer produces N >= 1 top blobs. DummyDataParameter mustspecify 1 or N
//shape fields, and 0, 1 or N data_fillers.
//
//If 0 data_fillers are specified, ConstantFiller with a value of 0 isused.
//If 1 data_filler is specified, it is applied to all top blobs. If Nare
//specified, the ith is applied to the ith top blob.
repeatedFillerParameter data_filler = 1;
repeatedBlobShape shape = 6;
//4D dimensions -- deprecated. Use "shape" instead.
repeateduint32 num = 2;
repeateduint32 channels = 3;
repeateduint32 height = 4;
repeateduint32 width = 5;
}
messageEltwiseParameter {
enumEltwiseOp {
PROD= 0;
SUM= 1;
MAX= 2;
}
optionalEltwiseOp operation = 1 [default = SUM]; // element-wise operation
repeatedfloat coeff = 2; // blob-wise coefficient for SUM operation
//Whether to use an asymptotically slower (for >2 inputs) butstabler method
//of computing the gradient for the PROD operation. (No effect for SUMop.)
optionalbool stable_prod_grad = 3 [default = true];
}
//Message that stores parameters used by ELULayer
messageELUParameter {
//Described in:
//Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fastand Accurate
//Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optionalfloat alpha = 1 [default = 1];
}
//Message that stores parameters used by EmbedLayer
messageEmbedParameter {
optionaluint32 num_output = 1; // The number of outputs for the layer
//The input is given as integers to be interpreted as one-hot
//vector indices with dimension num_input. Hence num_input should be
//1 greater than the maximum possible input value.
optionaluint32 input_dim = 2;
optionalbool bias_term = 3 [default = true]; // Whether to use a bias term
optionalFillerParameter weight_filler = 4; // The filler for the weight
optionalFillerParameter bias_filler = 5; // The filler for the bias
}
//Message that stores parameters used by ExpLayer
messageExpParameter {
//ExpLayer computes outputs y = base ^ (shift + scale * x), for base >0.
//Or if base is set to the default (-1), base is set to e,
//so y = exp(shift + scale * x).
optionalfloat base = 1 [default = -1.0];
optionalfloat scale = 2 [default = 1.0];
optionalfloat shift = 3 [default = 0.0];
}
///Message that stores parameters used by FlattenLayer
messageFlattenParameter {
//The first axis to flatten: all preceding axes are retained in theoutput.
//May be negative to index from the end (e.g., -1 for the last axis).
optionalint32 axis = 1 [default = 1];
//The last axis to flatten: all following axes are retained in theoutput.
//May be negative to index from the end (e.g., the default -1 for thelast
//axis).
optionalint32 end_axis = 2 [default = -1];
}
//Message that stores parameters used by HDF5DataLayer
messageHDF5DataParameter {
//Specify the data source.
optionalstring source = 1;
//Specify the batch size.
optionaluint32 batch_size = 2;
//Specify whether to shuffle the data.
//If shuffle == true, the ordering of the HDF5 files is shuffled,
//and the ordering of data within any given HDF5 file is shuffled,
//but data between different files are not interleaved; all of a file's
//data are output (in a random order) before moving onto another file.
optionalbool shuffle = 3 [default = false];
}
messageHDF5OutputParameter {
optionalstring file_name = 1;
}
messageHingeLossParameter {
enumNorm {
L1= 1;
L2= 2;
}
//Specify the Norm to use L1 or L2
optionalNorm norm = 1 [default = L1];
}
messageImageDataParameter {
//Specify the data source.
optionalstring source = 1;
//Specify the batch size.
optionaluint32 batch_size = 4 [default = 1];
//The rand_skip variable is for the data layer to skip a few datapoints
//to avoid all asynchronous sgd clients to start at the same point. Theskip
//point would be set as rand_skip * rand(0,1). Note that rand_skipshould not
//be larger than the number of keys in the database.
optionaluint32 rand_skip = 7 [default = 0];
//Whether or not ImageLayer should shuffle the list of files at everyepoch.
optionalbool shuffle = 8 [default = false];
//It will also resize images if new_height or new_width are not zero.
optionaluint32 new_height = 9 [default = 0];
optionaluint32 new_width = 10 [default = 0];
//Specify if the images are color or gray
optionalbool is_color = 11 [default = true];
//DEPRECATED. See TransformationParameter. For data pre-processing, wecan do
//simple scaling and subtracting the data mean, if provided. Note thatthe
//mean subtraction is always carried out before scaling.
optionalfloat scale = 2 [default = 1];
optionalstring mean_file = 3;
//DEPRECATED. See TransformationParameter. Specify if we would like torandomly
//crop an image.
optionaluint32 crop_size = 5 [default = 0];
//DEPRECATED. See TransformationParameter. Specify if we want torandomly mirror
//data.
optionalbool mirror = 6 [default = false];
optionalstring root_folder = 12 [default = ""];
}
messageInfogainLossParameter {
//Specify the infogain matrix source.
optionalstring source = 1;
}
messageInnerProductParameter {
optionaluint32 num_output = 1; // The number of outputs for the layer
optionalbool bias_term = 2 [default = true]; // whether to have bias terms
optionalFillerParameter weight_filler = 3; // The filler for the weight
optionalFillerParameter bias_filler = 4; // The filler for the bias
//The first axis to be lumped into a single inner product computation;
//all preceding axes are retained in the output.
//May be negative to index from the end (e.g., -1 for the last axis).
optionalint32 axis = 5 [default = 1];
//Specify whether to transpose the weight matrix or not.
//If transpose == true, any operations will be performed on thetranspose
//of the weight matrix. The weight matrix itself is not going to betransposed
//but rather the transfer flag of operations will be toggledaccordingly.
optionalbool transpose = 6 [default = false];
}
messageInputParameter {
//This layer produces N >= 1 top blob(s) to be assigned manually.
//Define N shapes to set a shape for each top.
//Define 1 shape to set the same shape for every top.
//Define no shape to defer to reshaping manually.
repeatedBlobShape shape = 1;
}
//Message that stores parameters used by LogLayer
messageLogParameter {
//LogLayer computes outputs y = log_base(shift + scale * x), for base >0.
//Or if base is set to the default (-1), base is set to e,
//so y = ln(shift + scale * x) = log_e(shift + scale * x)
optionalfloat base = 1 [default = -1.0];
optionalfloat scale = 2 [default = 1.0];
optionalfloat shift = 3 [default = 0.0];
}
//Message that stores parameters used by LRNLayer
messageLRNParameter {
optionaluint32 local_size = 1 [default = 5];
optionalfloat alpha = 2 [default = 1.];
optionalfloat beta = 3 [default = 0.75];
enumNormRegion {
ACROSS_CHANNELS= 0;
WITHIN_CHANNEL= 1;
}
optionalNormRegion norm_region = 4 [default = ACROSS_CHANNELS];
optionalfloat k = 5 [default = 1.];
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 6 [default = DEFAULT];
}
messageMemoryDataParameter {
optionaluint32 batch_size = 1;
optionaluint32 channels = 2;
optionaluint32 height = 3;
optionaluint32 width = 4;
}
messageMVNParameter {
//This parameter can be set to false to normalize mean only
optionalbool normalize_variance = 1 [default = true];
//This parameter can be set to true to perform DNN-like MVN
optionalbool across_channels = 2 [default = false];
//Epsilon for not dividing by zero while normalizing variance
optionalfloat eps = 3 [default = 1e-9];
}
messageParameterParameter {
optionalBlobShape shape = 1;
}
messagePoolingParameter {
enumPoolMethod {
MAX= 0;
AVE= 1;
STOCHASTIC= 2;
}
optionalPoolMethod pool = 1 [default = MAX]; // The pooling method
//Pad, kernel size, and stride are all given as a single value forequal
//dimensions in height and width or as Y, X pairs.
optionaluint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
optionaluint32 pad_h = 9 [default = 0]; // The padding height
optionaluint32 pad_w = 10 [default = 0]; // The padding width
optionaluint32 kernel_size = 2; // The kernel size (square)
optionaluint32 kernel_h = 5; // The kernel height
optionaluint32 kernel_w = 6; // The kernel width
optionaluint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
optionaluint32 stride_h = 7; // The stride height
optionaluint32 stride_w = 8; // The stride width
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 11 [default = DEFAULT];
//If global_pooling then it will pool over the size of the bottom bydoing
//kernel_h = bottom->height and kernel_w = bottom->width
optionalbool global_pooling = 12 [default = false];
}
messagePowerParameter {
//PowerLayer computes outputs y = (shift + scale * x) ^ power.
optionalfloat power = 1 [default = 1.0];
optionalfloat scale = 2 [default = 1.0];
optionalfloat shift = 3 [default = 0.0];
}
messagePythonParameter {
optionalstring module = 1;
optionalstring layer = 2;
//This value is set to the attribute `param_str` of the `PythonLayer`object
//in Python before calling the `setup()` method. This could be anumber,
//string, dictionary in Python dict format, JSON, etc. You may parsethis
//string in `setup` method and use it in `forward` and `backward`.
optionalstring param_str = 3 [default = ''];
//Whether this PythonLayer is shared among worker solvers during dataparallelism.
//If true, each worker solver sequentially run forward from this layer.
//This value should be set true if you are using it as a data layer.
optionalbool share_in_parallel = 4 [default = false];
}
//Message that stores parameters used by RecurrentLayer
messageRecurrentParameter {
//The dimension of the output (and usually hidden state) representation--
//must be explicitly set to non-zero.
optionaluint32 num_output = 1 [default = 0];
optionalFillerParameter weight_filler = 2; // The filler for the weight
optionalFillerParameter bias_filler = 3; // The filler for the bias
//Whether to enable displaying debug_info in the unrolled recurrentnet.
optionalbool debug_info = 4 [default = false];
//Whether to add as additional inputs (bottoms) the initial hiddenstate
//blobs, and add as additional outputs (tops) the final timestep hiddenstate
//blobs. The number of additional bottom/top blobs required depends onthe
//recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
optionalbool expose_hidden = 5 [default = false];
}
//Message that stores parameters used by ReductionLayer
messageReductionParameter {
enumReductionOp {
SUM= 1;
ASUM= 2;
SUMSQ= 3;
MEAN= 4;
}
optionalReductionOp operation = 1 [default = SUM]; // reduction operation
//The first axis to reduce to a scalar -- may be negative to index fromthe
//end (e.g., -1 for the last axis).
//(Currently, only reduction along ALL "tail" axes issupported; reduction
//of axis M through N, where N < num_axes - 1, is unsupported.)
//Suppose we have an n-axis bottom Blob with shape:
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
//If axis == m, the output Blob will have shape
// (d0, d1, d2, ..., d(m-1)),
//and the ReductionOp operation is performed (d0 * d1 * d2 * ... *d(m-1))
//times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
//If axis == 0 (the default), the output Blob always has the emptyshape
//(count 1), performing reduction across the entire input --
//often useful for creating new loss functions.
optionalint32 axis = 2 [default = 0];
optionalfloat coeff = 3 [default = 1.0]; // coefficient for output
}
//Message that stores parameters used by ReLULayer
messageReLUParameter {
//Allow non-zero slope for negative inputs to speed up optimization
//Described in:
//Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifiernonlinearities
//improve neural network acoustic models. In ICML Workshop on DeepLearning
//for Audio, Speech, and Language Processing.
optionalfloat negative_slope = 1 [default = 0];
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 2 [default = DEFAULT];
}
messageReshapeParameter {
//Specify the output dimensions. If some of the dimensions are set to0,
//the corresponding dimension from the bottom layer is used(unchanged).
//Exactly one dimension may be set to -1, in which case its value is
//inferred from the count of the bottom blob and the remainingdimensions.
//For example, suppose we want to reshape a 2D blob "input"with shape 2 x 8:
//
// layer {
// type: "Reshape" bottom: "input" top: "output"
// reshape_param { ... }
// }
//
//If "input" is 2D with shape 2 x 8, then the followingreshape_param
//specifications are all equivalent, producing a 3D blob "output"with shape
//2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }
// reshape_param { shape { dim: 0 dim:-1 dim: 4 } }
//
optionalBlobShape shape = 1;
//axis and num_axes control the portion of the bottom blob's shape thatare
//replaced by (included in) the reshape. By default (axis == 0 and
//num_axes == -1), the entire bottom blob shape is included in thereshape,
//and hence the shape field must specify the entire output shape.
//
//axis may be non-zero to retain some portion of the beginning of theinput
//shape (and may be negative to index from the end; e.g., -1 to beginthe
//reshape after the last axis, including nothing in the reshape,
//-2 to include only the last axis, etc.).
//
//For example, suppose "input" is a 2D blob with shape 2 x 8.
//Then the following ReshapeLayer specifications are all equivalent,
//producing a blob "output" with shape 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }
//
//num_axes specifies the extent of the reshape.
//If num_axes >= 0 (and axis >= 0), the reshape will be performedonly on
//input axes in the range [axis, axis+num_axes].
//num_axes may also be -1, the default, to include all remaining axes
//(starting from axis).
//
//For example, suppose "input" is a 2D blob with shape 2 x 8.
//Then the following ReshapeLayer specifications are equivalent,
//producing a blob "output" with shape 1 x 2 x 8.
//
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }
// reshape_param { shape { dim: 1 } num_axes: 0 }
//
//On the other hand, these would produce output blob shape 2 x 1 x 8:
//
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }
//
optionalint32 axis = 2 [default = 0];
optionalint32 num_axes = 3 [default = -1];
}
messageScaleParameter {
//The first axis of bottom[0] (the first input Blob) along which toapply
//bottom[1] (the second input Blob). May be negative to index from theend
//(e.g., -1 for the last axis).
//
//For example, if bottom[0] is 4D with shape 100x3x40x60, the output
//top[0] will have the same shape, and bottom[1] may have any of the
//following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
//Furthermore, bottom[1] may have the empty shape (regardless of thevalue of
//"axis") -- a scalar multiplier.
optionalint32 axis = 1 [default = 1];
//(num_axes is ignored unless just one bottom is given and the scale is
//a learned parameter of the layer. Otherwise, num_axes is determinedby the
//number of axes by the second bottom.)
//The number of axes of the input (bottom[0]) covered by the scale
//parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
//Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
optionalint32 num_axes = 2 [default = 1];
//(filler is ignored unless just one bottom is given and the scale is
//a learned parameter of the layer.)
//The initialization for the learned scale parameter.
//Default is the unit (1) initialization, resulting in the ScaleLayer
//initially performing the identity operation.
optionalFillerParameter filler = 3;
//Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer,but
//may be more efficient). Initialized with bias_filler (defaults to0).
optionalbool bias_term = 4 [default = false];
optionalFillerParameter bias_filler = 5;
}
messageSigmoidParameter {
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 1 [default = DEFAULT];
}
messageSliceParameter {
//The axis along which to slice -- may be negative to index from theend
//(e.g., -1 for the last axis).
//By default, SliceLayer concatenates blobs along the "channels"axis (1).
optionalint32 axis = 3 [default = 1];
repeateduint32 slice_point = 2;
//DEPRECATED: alias for "axis" -- does not support negativeindexing.
optionaluint32 slice_dim = 1 [default = 1];
}
//Message that stores parameters used by SoftmaxLayer,SoftmaxWithLossLayer
messageSoftmaxParameter {
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 1 [default = DEFAULT];
//The axis along which to perform the softmax -- may be negative toindex
//from the end (e.g., -1 for the last axis).
//Any other axes will be evaluated as independent softmaxes.
optionalint32 axis = 2 [default = 1];
}
messageTanHParameter {
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 1 [default = DEFAULT];
}
//Message that stores parameters used by TileLayer
messageTileParameter {
//The index of the axis to tile.
optionalint32 axis = 1 [default = 1];
//The number of copies (tiles) of the blob to output.
optionalint32 tiles = 2;
}
//Message that stores parameters used by ThresholdLayer
messageThresholdParameter {
optionalfloat threshold = 1 [default = 0]; // Strictly positive values
}
messageWindowDataParameter {
//Specify the data source.
optionalstring source = 1;
//For data pre-processing, we can do simple scaling and subtracting the
//data mean, if provided. Note that the mean subtraction is alwayscarried
//out before scaling.
optionalfloat scale = 2 [default = 1];
optionalstring mean_file = 3;
//Specify the batch size.
optionaluint32 batch_size = 4;
//Specify if we would like to randomly crop an image.
optionaluint32 crop_size = 5 [default = 0];
//Specify if we want to randomly mirror data.
optionalbool mirror = 6 [default = false];
//Foreground (object) overlap threshold
optionalfloat fg_threshold = 7 [default = 0.5];
//Background (non-object) overlap threshold
optionalfloat bg_threshold = 8 [default = 0.5];
//Fraction of batch that should be foreground objects
optionalfloat fg_fraction = 9 [default = 0.25];
//Amount of contextual padding to add around a window
//(used only by the window_data_layer)
optionaluint32 context_pad = 10 [default = 0];
//Mode for cropping out a detection window
//warp: cropped window is warped to a fixed size and aspect ratio
//square: the tightest square around the window is cropped
optionalstring crop_mode = 11 [default = "warp"];
//cache_images: will load all images in memory for faster access
optionalbool cache_images = 12 [default = false];
//append root_folder to locate images
optionalstring root_folder = 13 [default = ""];
}
messageSPPParameter {
enumPoolMethod {
MAX= 0;
AVE= 1;
STOCHASTIC= 2;
}
optionaluint32 pyramid_height = 1;
optionalPoolMethod pool = 2 [default = MAX]; // The pooling method
enumEngine {
DEFAULT= 0;
CAFFE= 1;
CUDNN= 2;
}
optionalEngine engine = 6 [default = DEFAULT];
}
//DEPRECATED: use LayerParameter.
messageV1LayerParameter {
repeatedstring bottom = 2;
repeatedstring top = 3;
optionalstring name = 4;
repeatedNetStateRule include = 32;
repeatedNetStateRule exclude = 33;
enumLayerType {
NONE= 0;
ABSVAL= 35;
ACCURACY= 1;
ARGMAX= 30;
BNLL= 2;
CONCAT= 3;
CONTRASTIVE_LOSS= 37;
CONVOLUTION= 4;
DATA= 5;
DECONVOLUTION= 39;
DROPOUT= 6;
DUMMY_DATA= 32;
EUCLIDEAN_LOSS= 7;
ELTWISE= 25;
EXP= 38;
FLATTEN= 8;
HDF5_DATA= 9;
HDF5_OUTPUT= 10;
HINGE_LOSS= 28;
IM2COL= 11;
IMAGE_DATA= 12;
INFOGAIN_LOSS= 13;
INNER_PRODUCT= 14;
LRN= 15;
MEMORY_DATA= 29;
MULTINOMIAL_LOGISTIC_LOSS= 16;
MVN= 34;
POOLING= 17;
POWER= 26;
RELU= 18;
SIGMOID= 19;
SIGMOID_CROSS_ENTROPY_LOSS= 27;
SILENCE= 36;
SOFTMAX= 20;
SOFTMAX_LOSS= 21;
SPLIT= 22;
SLICE= 33;
TANH= 23;
WINDOW_DATA= 24;
THRESHOLD= 31;
}
optionalLayerType type = 5;
repeatedBlobProto blobs = 6;
repeatedstring param = 1001;
repeatedDimCheckMode blob_share_mode = 1002;
enumDimCheckMode {
STRICT= 0;
PERMISSIVE= 1;
}
repeatedfloat blobs_lr = 7;
repeatedfloat weight_decay = 8;
repeatedfloat loss_weight = 35;
optionalAccuracyParameter accuracy_param = 27;
optionalArgMaxParameter argmax_param = 23;
optionalConcatParameter concat_param = 9;
optionalContrastiveLossParameter contrastive_loss_param = 40;
optionalConvolutionParameter convolution_param = 10;
optionalDataParameter data_param = 11;
optionalDropoutParameter dropout_param = 12;
optionalDummyDataParameter dummy_data_param = 26;
optionalEltwiseParameter eltwise_param = 24;
optionalExpParameter exp_param = 41;
optionalHDF5DataParameter hdf5_data_param = 13;
optionalHDF5OutputParameter hdf5_output_param = 14;
optionalHingeLossParameter hinge_loss_param = 29;
optionalImageDataParameter image_data_param = 15;
optionalInfogainLossParameter infogain_loss_param = 16;
optionalInnerProductParameter inner_product_param = 17;
optionalLRNParameter lrn_param = 18;
optionalMemoryDataParameter memory_data_param = 22;
optionalMVNParameter mvn_param = 34;
optionalPoolingParameter pooling_param = 19;
optionalPowerParameter power_param = 21;
optionalReLUParameter relu_param = 30;
optionalSigmoidParameter sigmoid_param = 38;
optionalSoftmaxParameter softmax_param = 39;
optionalSliceParameter slice_param = 31;
optionalTanHParameter tanh_param = 37;
optionalThresholdParameter threshold_param = 25;
optionalWindowDataParameter window_data_param = 20;
optionalTransformationParameter transform_param = 36;
optionalLossParameter loss_param = 42;
optionalV0LayerParameter layer = 1;
}
//DEPRECATED: V0LayerParameter is the old way of specifying layerparameters
//in Caffe. We keep this message type around for legacy support.
messageV0LayerParameter {
optionalstring name = 1; // the layer name
optionalstring type = 2; // the string to specify the layer type
//Parameters to specify layers with inner products.
optionaluint32 num_output = 3; // The number of outputs for the layer
optionalbool biasterm = 4 [default = true]; // whether to have bias terms
optionalFillerParameter weight_filler = 5; // The filler for the weight
optionalFillerParameter bias_filler = 6; // The filler for the bias
optionaluint32 pad = 7 [default = 0]; // The padding size
optionaluint32 kernelsize = 8; // The kernel size
optionaluint32 group = 9 [default = 1]; // The group size for group conv
optionaluint32 stride = 10 [default = 1]; // The stride
enumPoolMethod {
MAX= 0;
AVE= 1;
STOCHASTIC= 2;
}
optionalPoolMethod pool = 11 [default = MAX]; // The pooling method
optionalfloat dropout_ratio = 12 [default = 0.5]; // dropout ratio
optionaluint32 local_size = 13 [default = 5]; // for local response norm
optionalfloat alpha = 14 [default = 1.]; // for local response norm
optionalfloat beta = 15 [default = 0.75]; // for local response norm
optionalfloat k = 22 [default = 1.];
//For data layers, specify the data source
optionalstring source = 16;
//For data pre-processing, we can do simple scaling and subtracting the
//data mean, if provided. Note that the mean subtraction is alwayscarried
//out before scaling.
optionalfloat scale = 17 [default = 1];
optionalstring meanfile = 18;
//For data layers, specify the batch size.
optionaluint32 batchsize = 19;
//For data layers, specify if we would like to randomly crop an image.
optionaluint32 cropsize = 20 [default = 0];
//For data layers, specify if we want to randomly mirror data.
optionalbool mirror = 21 [default = false];
//The blobs containing the numeric parameters of the layer
repeatedBlobProto blobs = 50;
//The ratio that is multiplied on the global learning rate. If you wantto
//set the learning ratio for one blob, you need to set it for allblobs.
repeatedfloat blobs_lr = 51;
//The weight decay that is multiplied on the global weight decay.
repeatedfloat weight_decay = 52;
//The rand_skip variable is for the data layer to skip a few datapoints
//to avoid all asynchronous sgd clients to start at the same point. Theskip
//point would be set as rand_skip * rand(0,1). Note that rand_skipshould not
//be larger than the number of keys in the database.
optionaluint32 rand_skip = 53 [default = 0];
//Fields related to detection (det_*)
//foreground (object) overlap threshold
optionalfloat det_fg_threshold = 54 [default = 0.5];
//background (non-object) overlap threshold
optionalfloat det_bg_threshold = 55 [default = 0.5];
//Fraction of batch that should be foreground objects
optionalfloat det_fg_fraction = 56 [default = 0.25];
//optional bool OBSOLETE_can_clobber = 57 [default = true];
//Amount of contextual padding to add around a window
//(used only by the window_data_layer)
optionaluint32 det_context_pad = 58 [default = 0];
//Mode for cropping out a detection window
//warp: cropped window is warped to a fixed size and aspect ratio
//square: the tightest square around the window is cropped
optionalstring det_crop_mode = 59 [default = "warp"];
//For ReshapeLayer, one needs to specify the new dimensions.
optionalint32 new_num = 60 [default = 0];
optionalint32 new_channels = 61 [default = 0];
optionalint32 new_height = 62 [default = 0];
optionalint32 new_width = 63 [default = 0];
//Whether or not ImageLayer should shuffle the list of files at everyepoch.
//It will also resize images if new_height or new_width are not zero.
optionalbool shuffle_images = 64 [default = false];
//For ConcatLayer, one needs to specify the dimension forconcatenation, and
//the other dimensions must be the same for all the bottom blobs.
//By default it will concatenate blobs along the channels dimension.
optionaluint32 concat_dim = 65 [default = 1];
optionalHDF5OutputParameter hdf5_output_param = 1001;
}
messagePReLUParameter {
//Parametric ReLU described in K. He et al, Delving Deep intoRectifiers:
//Surpassing Human-Level Performance on ImageNet Classification, 2015.
//Initial value of a_i. Default is a_i=0.25 for all i.
optionalFillerParameter filler = 1;
//Whether or not slope parameters are shared across channels.
optionalbool channel_shared = 2 [default = false];
}