【bzoj3503】[Cqoi2014]和谐矩阵

根据第一行可以推出第 n <script type="math/tex" id="MathJax-Element-121">n</script>行,然后以此列出异或方程。
然后就高斯消元解异或方程即可。

#include <bits/stdc++.h>
#define N 49
#define eps 1e-7
using namespace std;
int n,m,ans[N][N],a[N][N],b[N];
bitset<N> A[N][N],B[N];
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++)
        A[1][i][i]=1;
    for (int i=2;i<=n;i++)
        for (int j=1;j<=m;j++)
            A[i][j]=A[i-1][j-1]^A[i-2][j]^A[i-1][j]^A[i-1][j+1];
    /*for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            cout<<A[i][j]<<endl;*/
    for (int i=1;i<=m;i++)
        B[i]=A[n-1][i]^A[n][i-1]^A[n][i]^A[n][i+1];
    for (int i=1;i<=m;i++)
        for (int j=1;j<=m;j++)
            a[i][j]=B[i][j];
    for (int i=1,j,k;i<=m;i++)
    {
        for (j=i;j<=m;j++) if (fabs(a[j][i])>eps) break;
        if (j>m) continue;
        for (k=1;k<=m+1;k++) swap(a[j][k],a[i][k]);
        for (j=i+1;j<=m;j++)
            if (a[j][i])
                for (k=i;k<=m+1;k++) a[j][k]^=a[i][k];
    }
    for (int i=m;i;i--)
    {
        ans[1][i]=a[i][i]?a[i][m+1]:1;
        if (ans[1][i])
            for (int j=1;j<i;j++) a[j][m+1]^=a[j][i];
    }
    for (int i=2;i<=n;i++)
        for (int j=1;j<=m;j++)
            ans[i][j]=ans[i-1][j-1]^ans[i-2][j]^ans[i-1][j]^ans[i-1][j+1];
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            printf("%d%s",ans[i][j],j==m?"\n":" ");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值