【Codeforces536D】Tavas in Kansas

题意:

  • 给你一张 n 个点m条边的无向图,每个点有一个点权 pi (存在负数)
  • 有两个人在进行游戏,他们分别在 s t号点。
  • 两个人轮流操作,每次操作选出一个非负整数 x ,表示将到他们所在点最短距离小于等于x的点的点权拿走。(拿走后点权消失,且每次拿走的有点权的点的个数至少为1)
  • 询问最后胜负情况(谁的总点权和较大)。
  • n2000,n1m100000

题解:

  • 首先跑最短路得出每个点到 s t的最短距离 ds[i],dt[i]
  • 然后问题转化为二维空间上有 n 个点(ds[i],dt[i]),每次每个人选择平行于 x 轴或y轴的直线,将在它左方或者下方的点拿走,并保证每次至少拿走一个点。
  • 首先可以离散化。
  • 然后按时间从晚到早进行转移。
  • dp[i][j][k] 代表在第 k 个人某次操作前,已经拿走的点是在(i,j)左下方的点的最大或者最小点权差,根据 dp[0][0][0] 正负可以判断最终胜负。
  • 然后可以进行一行一列的转移,讨论一下这行是否有点或者是否是某次选择的第一行或第一列就行了。
  • 时间复杂度 O((n+m)logn+n2)

代码:

#include <bits/stdc++.h>
#define gc getchar()
#define ll long long
#define N 2009
#define inf 0x3f
using namespace std;
ll n,m,s,t,dis[N],Dis[N],vis[N],r,c,val[N],f[N][N];
ll S[N][N],T[N][N],dp[N][N][2];
vector <ll> X,Y;
int main()
{
    #ifdef ONLINE_JUDGE
    bool lych_cys_is_zero=true,miaom_is_zero=true;
    #else
    freopen("1.in","r",stdin);
    #endif
    ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
    cin>>n>>m>>s>>t;
    for (ll i=1;i<=n;i++) cin>>val[i];
    memset(f,inf,sizeof(f));
    for (ll i=1;i<=m;i++)
    {
        ll x,y,z;
        cin>>x>>y>>z;
        f[x][y]=f[y][x]=min(z,f[x][y]);
    }
    memset(dis,inf,sizeof(dis));
    memset(Dis,inf,sizeof(Dis));
    dis[s]=Dis[t]=0;
    memset(vis,0,sizeof(vis));
    for (ll i=1;i<=n;i++)
    {
        ll k=-1;
        for (ll j=1;j<=n;j++)
            if (!vis[j]&&(dis[j]<dis[k]||k==-1)) k=j;
        vis[k]=1;
        for (ll j=1;j<=n;j++)
            if (!vis[j]&&f[k][j]<(ll)1e18&&dis[k]+f[k][j]<dis[j]) dis[j]=dis[k]+f[k][j];
    }
    memset(vis,0,sizeof(vis));
    for (ll i=1;i<=n;i++)
    {
        ll k=-1;
        for (ll j=1;j<=n;j++)
            if (!vis[j]&&(Dis[j]<Dis[k]||k==-1)) k=j;
        vis[k]=1;
        for (ll j=1;j<=n;j++)
            if (!vis[j]&&f[k][j]<(ll)1e18&&Dis[k]+f[k][j]<Dis[j]) Dis[j]=Dis[k]+f[k][j];
    }
    X.clear(),Y.clear();
    for (ll i=1;i<=n;i++) X.push_back(dis[i]),Y.push_back(Dis[i]);
    sort(X.begin(),X.end()),sort(Y.begin(),Y.end());
    X.resize(unique(X.begin(),X.end())-X.begin());
    Y.resize(unique(Y.begin(),Y.end())-Y.begin());
    memset(S,0,sizeof(S));
    memset(T,0,sizeof(T));
    memset(dp,0,sizeof(dp));
    for (ll i=1;i<=n;i++)
    {
        dis[i]=lower_bound(X.begin(),X.end(),dis[i])-X.begin()+1;
        Dis[i]=lower_bound(Y.begin(),Y.end(),Dis[i])-Y.begin()+1;
        S[dis[i]][Dis[i]]+=val[i],T[dis[i]][Dis[i]]++;
    }
    for (int i=1;i<=n;i++)
    {
        cerr<<dis[i]<<" "<<Dis[i]<<endl;
    }
    n++;
    for (ll i=1;i<=n;i++)
        for (ll j=1;j<=n;j++)
        {
            S[i][j]+=S[i-1][j]+S[i][j-1]-S[i-1][j-1];
            T[i][j]+=T[i-1][j]+T[i][j-1]-T[i-1][j-1];
        }
    for (ll i=n-1;i>=0;i--)
        for (ll j=n-1;j>=0;j--)
        {
            if (T[i+1][n]-T[i][n]-T[i+1][j]+T[i][j]==0)
                dp[i][j][0]=dp[i+1][j][0];
            else
                dp[i][j][0]=max(dp[i+1][j][0],dp[i+1][j][1])+S[i+1][n]-S[i][n]-S[i+1][j]+S[i][j];
            if (T[n][j+1]-T[n][j]-T[i][j+1]+T[i][j]==0)
                dp[i][j][1]=dp[i][j+1][1];
            else
                dp[i][j][1]=min(dp[i][j+1][1],dp[i][j+1][0])-S[n][j+1]+S[n][j]+S[i][j+1]-S[i][j];
        }
    cerr<<dp[0][0][0]<<endl;
    if (dp[0][0][0]>0) cout<<"Break a heart"<<endl;
    else if (dp[0][0][0]<0) cout<<"Cry"<<endl;
    else cout<<"Flowers"<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值