题目描述:
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥! 我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。 由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
蓝桥杯垒骰子问题及矩阵快速幂解法

这是一篇关于蓝桥杯竞赛的算法题解,主要探讨了垒骰子的问题,其中涉及到骰子稳定性与数字排斥现象。题目要求计算在一定约束下,不同骰子垒叠方式的数量,对结果取模。解决方案是利用矩阵快速幂的方法,通过递推矩阵求解。样例输入与输出展示了问题的基本形式和数据范围。
最低0.47元/天 解锁文章
5862

被折叠的 条评论
为什么被折叠?



