三大计算机视觉和机器学习库的算法汇总

主要包括有OpenCV、Weka和Matlab,另外其中包含LibSVM、Vlfeat和DeepLearnToolbox等。

1.OpenCV

主页:http://opencv.org/ 
下载地址:http://opencv.org/downloads.html 
编程环境:VS 
版本:3.0.0 
教程:doc\opencv_tutorials.pdf 
API接口:doc\opencv2refman.pdf 
特征检测: 
• “FAST” – FastFeatureDetector 
• “STAR” – StarFeatureDetector 
• “SIFT” – SIFT (nonfree module) 
• “SURF” – SURF (nonfree module) 
• “ORB” – ORB 
• “BRISK” – BRISK 
• “MSER” – MSER 
• “GFTT” – GoodFeaturesToTrackDetector 
• “HARRIS” – GoodFeaturesToTrackDetector with Harris detector enabled 
• “Dense” – DenseFeatureDetector 
• “SimpleBlob” – SimpleBlobDetector 
描述符提取: 
• “SIFT” – SIFT 
• “SURF” – SURF 
• “BRIEF” – BriefDescriptorExtractor 
• “BRISK” – BRISK 
• “ORB” – ORB 
• “FREAK” – FREAK 
机器学习: 
Normal Bayes Classifier 
K-Nearest Neighbors 
Support Vector Machines 
Decision Trees 
Boosting 
Gradient Boosted Trees 
Random Trees 
Extremely randomized trees 
Expectation Maximization 
Neural Networks 
kmeans

2.Weka

下载地址http://www.cs.waikato.ac.nz/ml/weka/downloading.html 
LibSVM下载地址http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
编程环境:Eclipse 
版本:3.6 
教程:doc\index.html 
机器学习: 
1)weka.classifiers.bayes
 
AODE 
AODEsr 
BayesianLogisticRegression 
BayesNet 
ComplementNaiveBayes 
DMNBtext 
HNB 
NaiveBayes 
NaiveBayesMultinomial 
NaiveBayesMultinomialUpdateable 
NaiveBayesSimple 
NaiveBayesUpdateable 
WAODE 
2)weka.classifiers.functions 
GaussianProcesses 
IsotonicRegression 
LeastMedSq 
LibLINEAR 
LibSVM 
LinearRegression 
Logistic 
MultilayerPerceptron 
PaceRegression 
PLSClassifier 
RBFNetwork 
SimpleLinearRegression 
SimpleLogistic 
SMO 
SMOreg 
SPegasos 
VotedPerceptron 
Winnow 
3)weka.classifiers.lazy 
IB1 
IBk 
KStar 
LBR 
LWL 
4)weka.classifiers.meta 
AdaBoostM1 
AdditiveRegression 
AttributeSelectedClassifier 
Bagging 
ClassificationViaClustering 
ClassificationViaRegression 
CostSensitiveClassifier 
CVParameterSelection 
Dagging 
Decorate 
END 
FilteredClassifier 
Grading 
GridSearch 
LogitBoost 
MetaCost 
MultiBoostAB 
MultiClassClassifier 
MultiScheme 
OrdinalClassClassifier 
RacedIncrementalLogitBoost 
RandomCommittee 
RandomSubSpace 
RegressionByDiscretization 
RotationForest 
Stacking 
StackingC 
ThresholdSelector 
Vote 
5)weka.classifiers.mi 
CitationKNN 
MDD 
MIBoost 
MIDD 
MIEMDD 
MILR 
MINND 
MIOptimalBall 
MISMO 
MISVM 
MIWrapper 
SimpleMI 
6)weka.classifiers.rules 
ConjunctiveRule 
DecisionTable 
DecisionTableHashKey 
DTNB 
JRip 
M5Rules 
NNge 
OneR 
PART 
Prism 
Ridor 
Rule 
RuleStats 
ZeroR 
7)weka.classifiers.trees 
ADTree 
BFTree 
DecisionStump 
FT 
Id3 
J48 
J48graft 
LADTree 
LMT 
M5P 
NBTree 
RandomForest 
RandomTree 
REPTree 
SimpleCart 
UserClassifier 
8)weka.clusterers 
AbstractClusterer 
AbstractDensityBasedClusterer 
CheckClusterer 
CLOPE 
ClusterEvaluation 
Cobweb 
DBSCAN 
EM 
FarthestFirst 
FilteredClusterer 
HierarchicalClusterer 
MakeDensityBasedClusterer 
OPTICS 
RandomizableClusterer 
RandomizableDensityBasedClusterer 
RandomizableSingleClustererEnhancer 
sIB 
SimpleKMeans 
SingleClustererEnhancer 
XMeans

3.Matlab

主页:http://www.mathworks.cn/index.html 
工具箱说明文档:http://www.mathworks.cn/products/index.html?sec=category 
用途说明文档:http://www.mathworks.cn/discovery/?s_tid=brdcrb

1)DeepLearnToolbox工具箱 
下载地址:https://github.com/yangzhixuan/DeepLearnToolbox 
教程:看包含的示例程序 
CNN 
SAE 
DBN 
CAE 
NN

2)Vlfeat工具箱 
下载地址:http://www.vlfeat.org/download.html 
视觉特征: 
HOG 
SIFT 
DSIFT 
LIOP 
MSER 
机器学习: 
GMM 
K-means 
AIB 
Quick shift 
SLIC 
SVM 
Forests of kd-trees

3)Neural Network Toolbox工具箱 
所有关于神经网络的开发

4)其他基本工具箱 
特征检测:
 
BRISK 
FAST 
Harris–Stephens 
minimum eigenvalue 
MSER 
SURF 
描述符提取: 
extractFeatures 
HOG 
分类/回归: 
Linear Regression 
Nonlinear Regression 
Generalized Linear Models 
Classification Trees and Regression Trees 
Discriminant Analysis 
Naive Bayes Classification 
Nearest Neighbors 
Model Building and Assessment 
聚类: 
Hierarchical Clustering 
k-Means Clustering 
Gaussian Mixture Models 
Hidden Markov Models 
集成: 
Boosting 
Bagging 
Random Subspace

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值