自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 图像分割、unet++的学习心得

在训练过程中,不断调整超参数,如学习率、批大小和训练的轮数等。在当今数字化飞速发展的时代,从医疗领域的精准疾病诊断(如肿瘤的检测与分割),到智能交通系统中的车辆与道路的分离识别,再到娱乐产业中的图像特效制作,图像分割技术无处不在。在当今数字化飞速发展的时代,从医疗领域的精准疾病诊断(如肿瘤的检测与分割),到智能交通系统中的车辆与道路的分离识别,再到娱乐产业中的图像特效制作,图像分割技术无处不在。无论是简单的基于阈值的分割,还是复杂的基于深度学习的分割方法,我都能根据具体的任务需求选择合适的技术手段。

2024-10-18 15:50:24 878

原创 YOLOV5的学习心得

在深度学习的浩瀚海洋中,目标检测算法如同璀璨的明星,照亮了计算机视觉领域的前行之路。而在这片璀璨星河中,YOLOv5无疑是最为耀眼的存在之一。它不仅改变了我对目标检测技术的认知,更激发了我深入探索计算机视觉领域的热情。以下,我将分享我的学习心得,希望能为同样对YOLOv5感兴趣的朋友提供一些启示。

2024-10-14 14:54:13 403

原创 YOLOV4的学习心得

在深度学习领域,目标检测技术是计算机视觉的重要组成部分,而YOLOv4作为YOLO系列的最新版本,无疑是该领域的一颗璀璨明星。自2020年发布以来,YOLOv4以其卓越的性能和高效的实时检测能力,赢得了业界的广泛赞誉,成为了众多开发者和研究者眼中的“神器”。通过深入学习和实践,我深刻体会到了YOLOv4的创新之处和应用价值。

2024-10-12 13:45:15 420

原创 YOLOV2学习心得

随着深度学习技术的不断进步,目标检测领域也在快速发展。YOLOv3、YOLOv4等后续版本的出现,进一步提升了模型的性能。未来,我相信通过模型的持续优化和算法的创新,YOLO系列模型将在更多实际应用中发挥重要作用,如自动驾驶、安防监控等,推动人工智能技术的广泛应用与普及。总结,YOLOv2的学习不仅让我深刻理解了目标检测技术的精髓,更激发了我对深度学习领域的无限热情。它不仅是一个工具,更是一种思考问题、解决问题的方式。未来,我将继续探索,不断学习,以期在人工智能的道路上走得更远。

2024-10-11 13:54:53 188

原创 关于YOLOV1和YOLOV2的学习心得

通过从初识到深研的历程,我不仅对YOLO系列模型有了深入的理解,更在实践中体会到了技术的无限魅力。从YOLOV1的革新到YOLOV2的优化,再到后续版本的不断迭代,我见证了目标检测技术的飞速发展。未来,我将以更加开放和探索的心态,继续在人工智能的道路上前行,不断挑战自我,追求技术的极致。

2024-10-10 14:13:02 372

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除