问题描述:
现在有一数组存放int型整数,数字有重复,且有一数字出现的频率超过了50%,请找出这个数字。
补充:主要考虑数据量很大的情况。
问题求解:
分析:
最直接的方法就是对数组中所有的数字排序,然后再扫描一遍,统计各个数字出现的次数,如果某个数字出现的次数超过一半,则输出这个数字。显然这个算法的时间复杂度是O(N * log2N + N)。
事实上,假如现在数组已经有序,那么数组中间的数字一定是这个要求的数字,所以根本不必扫描。此时算法的时间复杂度是O(N * log2N + 1)。那还能不能再简化一些呢?
我们看到,算法主要的消耗在排序这块,那能否跳过排序这个步骤呢?我们这样想,假如每次删除两个不同的数(不管包括不包括最高频数),那么,在剩下的数字里,原最高频数出现的频率一样超过了50%,不断重复这个过程,最后剩下的将全是同样的数字,即最高频数。此算法避免的排序,时间复杂度只为O(N)。
代码如下:
static int FindMostApperse(int[] num)
{
int candidate = 0;
int count = 0;
for (int i = 0; i < num.Length; i++)
{
if (count == 0)
{
candidate = num[i];
count = 1;
}
else
{
if (candidate == num[i])
count++;
else
count--;
}
}
return candidate;
}
这个算法体现了计算机科学中一种很普遍的思想,就是把一个问题转化为规模较小的若干个问题。分治、递归、贪心等都是基于这样的思想。转化的效率越高,转化之后问题的规模缩小的越快,则正题的时间复杂度越低。
扩展问题:
现在数组中没有出现频率一半的数字了,但有三个都超过了四分之一,找到他们。
分析:
与原问题一样,只要降低规模即可,每次去掉四个不相同的数字,一直重复,最后剩下的三个数字就是答案。
代码如下:
static int candiA = 0, candiB = 0, candiC = 0;
static void FindThreeMost(int[] num)
{
int countA = 0, countB = 0, countC = 0;
for (int i = 0; i < num.Length; i++)
{
if (countA == 0 || countB == 0 || countC == 0 )
{
if (countA == 0)
{
if (countB != 0 && num[i] == candiB)
countB++;
else if (countC != 0 && num[i] == candiC)
countC++;
else
{
candiA = num[i];
countA++;
}
}
else if (countB == 0)
{
if (countA != 0 && num[i] == candiA)
countA++;
else if (countC != 0 && num[i] == candiC)
countC++;
else
{
candiB = num[i];
countB++;
}
}
else if (countC == 0)
{
if (countA != 0 && num[i] == candiA)
countA++;
else if (countB != 0 && num[i] == candiB)
countB++;
else
{
candiC = num[i];
countC++;
}
}
}
else
{
if (num[i] == candiA)
countA++;
else if (num[i] == candiB)
countB++;
else if (num[i] == candiC)
countC++;
else
{
countA--;
countB--;
countC--;
}
}
}
}
此算法的时间复杂度仍为O(N),只是判断条件较多,欢迎大家拿出更简明的代码来讨论。