人工智能初步
苏子沭
这个作者很懒,什么都没留下…
展开
-
模拟退火算法解决tsp问题(c++)
该示例代码实现了一个简单的模拟退火算法,用于求解 TSP 问题。其中,`simulatedAnnealing()` 函数是模拟退火算法的主体部分,包括初始解的随机生成、邻域操作、目标函数的计算、接受准则等;`main()` 函数则是程序入口,读入城市数和距离矩阵,调用 `simulatedAnnealing()` 函数并输出结果。原创 2023-06-06 07:41:30 · 570 阅读 · 0 评论 -
模拟退火算法解决tsp问题(python)
在代码中,我们定义了distance()函数来计算两个城市之间的欧氏距离,定义了path_length()函数来计算一条路径的总长度,定义了initial_solution()函数来随机生成一个初始解。利用这些函数,我们定义了模拟退火算法的主函数simulated_annealing()。在该函数中,我们迭代过程中根据当前温度随机生成新解,并根据模拟退火算法判断是否选择该新解。最终,我们在测试程序中输入了城市坐标,并使用模拟退火算法求解tsp问题,输出了最优路径和最优路径长度。原创 2023-06-06 07:44:44 · 687 阅读 · 0 评论