【Stata】Stata论文实证分析的基础代码分享

文章提供了使用Stata进行论文实证分析的步骤,包括描述性统计、数据处理(如取对数、缩尾)、相关性分析、单位根检验、协整检验、主回归模型设定、稳健性测试以及异质性检验的详细代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

论文实证分析的一整套基础流程:描述性、相关性、相关检验(单位根、协整检验)、主回归模型、稳健性分析、异质性检验。

二、基础代码

2.1 描述性分析

ssc install asdoc
asdoc sum y x1 x2 x3 x4 x5 x6 x7 

2.2 数据处理

取对数:

foreach var of varlist y x1 x2 x3 x4 x5 x6 x7{
gen ln`var'=log(`var')
}

如果有缩尾:

winsor2 lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7, replace cuts(1 99)

2.3 相关性分析

asdoc pwcorr_a lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7, star1(0.01) star5(0.05) star10(0.1)

2.4 主回归模型之前的一些数据检验

单位根检验:

1、ADF检验

基本语法:xtunitroot fisher varname, trend dfuller demean lags(1)

2、LLC检验

基本语法:xtunitroot llc varname, lag(n) 一般使用T比较大

xtunitroot llc varname, trend demean lags(bic 12) --含个体效应和线性时间趋势项

3、IPS检验

基本语法:xtunitroot ips 变量名, lag(n) 其他语法同LLC一致

注:使用xtunitroot,help一下,便会出现所有的检验命令及其用法和实例

协整检验:

1、Kao 检验

基本语法:xtcointtest kao y x1 x2

2、Pedroni 检验

基本语法:.xtcointtest pedroni y x1 x2,trend

3、Westerlund 检验

基本语法: xtcointtest westerlund y x1 x2,trend

2.5 主回归模型

xtset province year
xtabond2 lny L.lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7, gmmstyle(L.lny lnx1 lnx2) ivstyle(lnx3 lnx4)twostep robust small orthogonal
est store m

2.6 稳健性检验

xtreg lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7, fe (fe是固定效应模型)
est store fe (保存回归结果)
esttab fe using reg2.rtf, replace b(%6.3f) se(%6.3f) se ar2(3) star(* 0.1 ** 0.05 *** 0.01) compress nogap mtitles("model1" ) title("Table1")
Ols 
reg lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7,robust (最小二乘法)
est store reg
esttab fe reg using reg2.rtf, replace b(%6.3f) se(%6.3f) se ar2(3) star(* 0.1 ** 0.05 *** 0.01) compress nogap mtitles("model1""model2" ) title("Table1")

2.7 异质性检验

sort x7 
gen group_x7 = group(4) 

forvalues i = 1/4{
qui reg lny lnx1 lnx2 lnx3 lnx4 lnx5 lnx6 lnx7 if group_x7 == `i', r 

qui outreg2 using "groupsave.xls", append bdec(3) tdec(2) ctitle(`y')
est store groupx7_`i'
}
esttab groupx7_*, replace nogap compress b(%6.3f) s(N r2_a) se star(* 0.1 ** 0.05 *** 0.01) addnotes("*** 1% ** 5% * 10%")
Stata中进行实证分析时,可以使用sum命令进行描述性统计分析。描述性统计分析可以提供关于变量的均值、标准差、最小值、最大值等统计指标。在进行描述性统计分析之前,需要先进行数据处理,确保数据的准确性和完整性。数据处理包括数据清洗、缺失值处理等步骤。接下来,可以使用sum命令对所需变量进行描述性统计分析。例如,使用以下命令进行描述性统计分析: sum y x1 x2 x3 x4 x5 x6 x7 这将生成关于变量y、x1、x2、x3、x4、x5、x6和x7的描述性统计结果。结果可以保存到Word文档中,以便后续分析和报告。\[1\] 参考文献: \[1\] 引用\[1\]中的描述性统计分析代码 #### 引用[.reference_title] - *1* *3* [【StataStata论文实证分析基础代码分享](https://blog.csdn.net/wzk4869/article/details/128881238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [手把手教你用stata完成实证分析](https://blog.csdn.net/weixin_42009765/article/details/105451616)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值