【计算机视觉 | 语义分割】综述 | 语义分割经典网络及轻量化模型盘点

本文详细介绍了深度学习中语义分割的经典模型,如FCN、SegNet、Deeplab系列、RefineNet和PSPNet,以及轻量化模型如ENet、ICNet和CGNet,强调了计算性能的重要性,并探讨了未来发展趋势,如自注意力模型和无监督/弱监督的语义分割。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于图像的语义分割又被理解为密集的像素预测,即将每个像素进行分类,这不仅仅对于算法是一个考验,而且对于硬件的计算性能也有很高的要求。

因此,本文从两方面着手考虑,一方面是基于语义分割经典网络的介绍,向大家展示语义分割方向上的,经典的网络模型。另一方面,从计算的性能入手,向大家介绍一下语义分割方向的轻量化模型。

一、经典语义分割模型

1.1 全卷积神经网络(FCN)

论文地址:

https://arxiv.org/abs/1411.4038

代码实现地址:

https://github.com/MarvinTeichmann/tensorflow-fcn[Tensorflow]

FCN神经网络作为深度学习中,语义分割网络的经典之作,是必须要理解和掌握的一个网络结构,它借鉴了传统的分类网络结构,而又区别于传统的分类网络,将传统分类网络的全连接层转化为卷积层。然后通过反卷积(deconvolution)进行上采样,逐步恢复图像的细节信息并扩大特征图的尺寸。

在恢复图像的细节信息过程中,FCN一方面通过可以学习的反卷积来实现,另一方面,采用了跳跃连接(skip-connection)的方式,将下采样过程中得到的特征信息与上采样过程中对应的特征图相融合。

在这里插入图片描述
虽然从目前的研究来看,FCN存在着诸如语义信息丢失,缺乏对于像素之间关联性的研究,但是FCN引入了编码-解码的结构,为深度学习在语义分割方向上的应用打开了一扇大门,也为后续的研究做出了许多借鉴之处。

FCN-8s在VOC-2012上的准确率如下图所示:

在这里插入图片描述

1.2 SegNet

论文地址:

https://arxiv.org/abs/1511.00561

代码实现地址:

https://github.com/tkuanlun350/Tensorflow-SegNet[Tensorflow]

SegNet采用了FCN的编码-解码的架构,但是与FCN不同的是,SegNet没有使用跳跃连接结构,并且在上采样的过程中,不是使用反卷积,而是使用了unpooling的操作。

SegNet相较于FCN有了两点的改进。第一,由于unpooling不需要进行学习,所以相比于FCN,SegNet的参数数量明显下降,从而降低了计算量。第二,由于SegNet在解码器中使用那些存储的索引来对相应特征图进行去池化操作。从而保证了高频信息的完整性,但是对于较低分辨率的特征图进行unpooling时,同样会忽略像素近邻之间的信息。

在这里插入图片描述
SegNet在CamVid数据集上的测试结果如下图所示:

在这里插入图片描述

1.3 Deeplab系列

deeplab系列是由Google团队设计的一系列的语义分割网络模型。是一个不断进化改进的过程,通过阅读deeplab系列的论文,理解作者一步步的改进思路,无论对于文章的理解,还是设计我们自己的网络结构,都有很大的帮助。

deeplabv1的设计亮点在于,采用了空洞卷积和CRF的处理。利用空洞卷积在不增加参数的情况下扩大了感受野的范围。而CRF的后期处理可以更好的提升语义分割的准确率。deeplabv2在v1的基础之上增加了ASPP(空洞空间金字塔池化)模块。如下图所示:

在这里插入图片描述
通过不同尺度的空洞率来提取不同尺寸的特征,更好的融合不同的特征,达到更好的分割效果。

deeplabv3的创新点有两个,一个是改进了ASPP模块,第二个是参考了HDC的设计思想,也就是横纵两种结构。对于改进的ASPP模块,如下图所示。

<think>好的,我现在需要帮助用户解决关于语义分割模型轻量化的问题。首先,我得理解用户的具体需求。用户提到想寻找语义分割模型轻量化的解决方案或方法,询问如何实现,包括方法技巧和最佳实践。根据用户提供的引用内容,特别是引用[3],里面提到了模型蒸馏、结构优化等策略,这可能对回答有帮助。 接下来,我需要回忆语义分割轻量化的常用方法。通常,轻量化方法包括模型架构设计、知识蒸馏、量化与剪枝、高效注意力机制等。用户提供的引用中提到了模型蒸馏的挑战和策略,比如自适应蒸馏权重和学生模型的结构优化,这些可以作为知识蒸馏部分的参考。此外,引用[2]提到融合先验知识,可能可以结合多模态数据或其他先验信息来优化模型,但用户的问题主要关于轻量化,可能需要侧重在结构优化和压缩技术上。 然后,我需要组织回答的结构。按照用户的要求,回答需要结构清晰,分步骤解决问题。可能需要分为模型架构设计、知识蒸馏、量化与剪枝、注意力机制优化、数据增强与训练策略等部分。每个部分需要给出具体的方法,并结合引用中的内容,比如引用[3]提到的结构优化和蒸馏策略,引用[2]中的多模态整合可能不直接相关,但如果有相关的轻量化方法可以提及。 在模型架构设计方面,MobileNet、ShuffleNet、ESPNet都是常用的轻量级模型,可以替换传统的主干网络。此外,Encoder-Decoder结构优化,比如使用深度可分离卷积,也是关键点。这部分需要详细说明,并给出例子。 知识蒸馏部分,引用[3]提到模型蒸馏中的挑战,如学生模型容量小,无法完全捕捉教师模型的知识,因此需要改进蒸馏算法。这里可以提到自适应蒸馏权重和结构优化,比如使用轻量级模块增强学生模型的能力。需要具体说明如何选择教师模型、设计损失函数,以及中间特征层的对齐方法。 量化与剪枝部分,量化包括训练后量化和量化感知训练,剪枝则有结构化剪枝和非结构化剪枝。这部分需要解释基本概念,并结合最佳实践,如逐步剪枝和微调的结合。 注意力机制优化方面,轻量级注意力模块如SE模块、CBAM,或者简化自注意力机制,可以降低计算量,同时保持性能。需要举例说明这些模块的应用。 数据增强与训练策略,引用[1]提到了实验跟踪工具如Weights & Biases,可以用于监控训练过程,帮助调优。这里可以建议使用自动数据增强和混合精度训练,结合监控工具来优化训练效率。 最后,最佳实践部分需要总结步骤,比如先选择轻量架构,再结合蒸馏和剪枝,进行量化,最后优化训练策略。同时,引用相关的引用内容,比如在蒸馏部分引用[3],在训练策略引用[1]。 需要注意用户的系统级指令,比如数学公式用$...$,独立公式用$$...$$,中文回答,生成相关问题。在回答中,确保正确使用LaTeX格式,没有用户不可见的内容,结构清晰,引用标记自然。 现在需要检查是否有遗漏的方法,比如模型压缩的其他技术,或者最新的轻量化研究。例如,神经架构搜索(NAS)是否适用,但可能属于架构设计的一部分。另外,模型分解或低秩近似也是可能的方法,但用户提供的引用中没有提到,可能需要简要提及。 最后,生成的相关问题需要与语义分割轻量化相关,比如具体技术的深入问题,应用场景,或工具使用等。结合引用内容,例如模型蒸馏的挑战、多模态整合等,但需确保问题与主题相关。</think>### 语义分割模型轻量化的实现方法与技巧 #### 一、轻量化核心思路 语义分割模型轻量化主要通过**模型压缩**和**效率优化**两个方向实现。核心目标是减少参数量和计算量,同时尽量保持分割精度。以下是具体方法: --- #### 二、轻量化方法与实践 1. **轻量级模型架构设计** - **主干网络替换**:使用轻量级主干网络(如$MobileNetV3$、$ShuffleNetV2$)替代传统ResNet等复杂结构。例如,$MobileNet$的深度可分离卷积可减少计算量: $$ \text{标准卷积计算量} = K^2 \cdot C_{in} \cdot C_{out} \cdot H \cdot W \\ \text{深度可分离卷积计算量} = K^2 \cdot C_{in} \cdot H \cdot W + C_{in} \cdot C_{out} \cdot H \cdot W $$ - **Encoder-Decoder优化**:设计对称型轻量编解码结构(如ESPNet),或使用空洞卷积替代下采样[^3]。 2. **知识蒸馏(Knowledge Distillation)** - **教师-学生框架**:用大模型(教师)指导轻量模型(学生)学习特征响应和输出分布。例如,设计自适应蒸馏损失函数: $$ \mathcal{L}_{total} = \alpha \mathcal{L}_{CE} + \beta \mathcal{L}_{KD} $$ 其中$\mathcal{L}_{KD}$通过KL散度对齐教师/学生的输出概率。 - **中间特征对齐**:强制学生模型学习教师模型中间层的特征表示,如使用注意力转移机制。 3. **量化与剪枝** - **低精度量化**:将32位浮点参数转换为8位整数(INT8),部分模型支持4位量化(需硬件支持)。 - **结构化剪枝**:移除冗余通道或层,例如通过$L1$-Norm评估通道重要性并裁剪低贡献通道。 4. **高效注意力机制** - 采用轻量级注意力模块(如Squeeze-and-Excitation模块),或简化自注意力计算: $$ \text{简化自注意力} = \text{Softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V \quad \text{→} \quad \text{线性近似} $$ 5. **数据增强与训练策略** - 使用自动数据增强(AutoAugment)提升小模型泛化能力。 - 混合精度训练(FP16/FP32)加速训练过程,结合实验跟踪工具(如Weights & Biases)监控指标[^1]。 --- #### 三、最佳实践流程 1. **步骤1**:选择轻量架构(如$Fast-SCNN$)作为基线。 2. **步骤2**:应用通道剪枝和量化,压缩模型规模。 3. **步骤3**:通过知识蒸馏融合大模型知识(如DeepLabV3+作为教师)。 4. **步骤4**:使用混合精度训练和自动增强优化训练效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值