一、什么是平移不变性
不变性就是目标发生了变换,但是你依然可以识别出来。在图像任务中,我们希望图像中的目标即使被平移、被旋转或者被缩放,模型都可以识别出来图像的目标。
所以不变性有下面几种:
- 平移不变性:Translation Invariance
- 旋转不变性:Rotation Invariance
- 尺度不变性:scale Invariance
- 光照不变性:Illumination Invariance
在图像分类任务中,平移不变性就是图像中的目标不管被移动到哪个位置,模型给出的标签应该都是相同的。
平移不变性对应的有一个概念是平移同变性(translation equivariance),这个是用在图像的目标检测中的,如果输入图像中的目标进行了平移,那么最终检测出来的候选框应该也相应的移动,这就是同时改变。
二、为什么会有平移不变性
主要是由两个原因,一个是卷积,一个是最大池化。
2.1 卷积
比方说目标是在图像的左上角,经过卷积之后,目标的特征也会在特征图的左上角;目标在图像的左下角,经过相同的卷积核卷积之后,目标的特征也会在特征图的左下角。然后卷积层后面接上一个全连接层进行分类,就算目标位置改变了,但是经过相同的卷积核卷积,然后展开变成全连接层。所以对于全连接层来说,改变的之后特征的位置。可能之前目标的特征是作为全连接的第一个神经元的输入,平移