【计算机视觉面经三】卷积神经网络的平移不变性理解

本文探讨了平移不变性在图像处理中的重要性,特别是卷积如何保持特征位置不变,以及最大池化如何通过返回感受野内的最大值实现一定程度的平移不变性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是平移不变性

不变性就是目标发生了变换,但是你依然可以识别出来。在图像任务中,我们希望图像中的目标即使被平移、被旋转或者被缩放,模型都可以识别出来图像的目标。

所以不变性有下面几种:

  1. 平移不变性:Translation Invariance
  2. 旋转不变性:Rotation Invariance
  3. 尺度不变性:scale Invariance
  4. 光照不变性:Illumination Invariance

在图像分类任务中,平移不变性就是图像中的目标不管被移动到哪个位置,模型给出的标签应该都是相同的。

平移不变性对应的有一个概念是平移同变性(translation equivariance),这个是用在图像的目标检测中的,如果输入图像中的目标进行了平移,那么最终检测出来的候选框应该也相应的移动,这就是同时改变。

二、为什么会有平移不变性

主要是由两个原因,一个是卷积,一个是最大池化。

2.1 卷积

比方说目标是在图像的左上角,经过卷积之后,目标的特征也会在特征图的左上角;目标在图像的左下角,经过相同的卷积核卷积之后,目标的特征也会在特征图的左下角。然后卷积层后面接上一个全连接层进行分类,就算目标位置改变了,但是经过相同的卷积核卷积,然后展开变成全连接层。所以对于全连接层来说,改变的之后特征的位置。可能之前目标的特征是作为全连接的第一个神经元的输入,平移

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值