Hive数据倾斜调优(详细版)

本文深入探讨了Hive数据倾斜的原因及表现,包括Map端和Reduce端的倾斜问题。通过对Map join、Count distinct和grouping set联合使用、Join及Group by时的数据倾斜进行分析,提出了解决方案,如调整Map端切片、使用Map join、过滤、键映射打散等策略,以优化Hive查询性能。
摘要由CSDN通过智能技术生成

一、数据倾斜本质

数据在各Map task或Reduce task上分配不均匀,数据量过大的task会拉长整个任务的执行时间。

二、表现

某个map task运行时间明显长于其他task。并且该task的数据量明显大于其他task。针对Map task,看INPUT_SPLIT_LENGTH_BYTES,该参数表示map task的输入数据量,和OUTPUT_BYTES_PHYSICAL,表示map task的输出数据量;针对Reduce task,看SHUFFLE_BYTES,表示shuffle输出,也就是reduce输入的数据量。

三、Map端数据倾斜

1. Map join时数据倾斜

(1) 原因

大表和小表join时,启用map join会把小表存储在读取到HashTable中并分发到大表的各map task内存中,进行join操作。当大表的map task数据量分布不均匀时,会产生数据倾斜。或者当join产生笛卡尔积时,会产生数据倾斜。

(2) 解决

可通过改变Map端切片方式,减少Map端Task的输入量,增加Map端Task数量来解决。

set hive.tez.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

set mapreduce.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值