方法:线性筛逆元
解析:
SB卡常数题
不想多说什么正常人都会做
ans=ϕ(m!)∗n!m!
ans=m!∗n!m!∗∏Pi−1Pi(Pi|m!)
ans=n!∗∏Pi−1Pi(Pi|m!)
ans=n!∗∏((Pi−1)∗inv[Pi])
代码:
using namespace std;
int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int T,R,n,m,cnt;
int fac[10000005],ine[10000005],pri[500005],ans[10000005];
bool mark[10000005];
void exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
}
int getine(int t)
{
int x,y;
exgcd(t,R,x,y);
return (x%R+R)%R;
}
void pre()
{
fac[1]=1;for(int i=2;i<=N;i++)fac[i]=(ll)fac[i-1]*i%R;
ine[1]=1;
for(int i=2;i<=N;i++)
{
if(!mark[i])pri[++cnt]=i,ine[i]=getine(i);
for(int j=1;pri[j]*i<=N&&j<=cnt;j++)
{
mark[pri[j]*i]=1;
//ine[pri[j]*i]=(ll)ine[pri[j]]*ine[i]%R;
if(i%pri[j]==0)break;
}
}
ans[1]=1;
for(int i=2;i<=N;i++)
{
ans[i]=ans[i-1];
if(!mark[i])ans[i]=(ll)ans[i]*(i-1)%R*ine[i]%R;
}
}
int main()
{
T=read();R=read();
pre();
while(T--)
{
n=read();m=read();
printf("%d\n",(ll)fac[n]*ans[m]%R);
}
return 0;
}