BZOJ 2186 [Sdoi2008]沙拉公主的困惑 线性逆元

题意:链接

方法:线性筛逆元

解析:

SB卡常数题

不想多说什么正常人都会做

ans=ϕ(m!)n!m!

ans=m!n!m!Pi1Pi(Pi|m!)

ans=n!Pi1Pi(Pi|m!)

ans=n!((Pi1)inv[Pi])

代码:

#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 1000000000
#define N 10000000
#define ll long long
using namespace std;
int read()
{
    int x=0;char ch=getchar();
    while(ch<'0'||ch>'9')ch=getchar();
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
int T,R,n,m,cnt;
int fac[10000005],ine[10000005],pri[500005],ans[10000005];
bool mark[10000005];
void exgcd(int a,int b,int &x,int &y)
{
    if(b==0){x=1;y=0;return;}
    exgcd(b,a%b,x,y);
    int t=x;x=y;y=t-a/b*y;
}
int getine(int t)
{
    int x,y;
    exgcd(t,R,x,y);
    return (x%R+R)%R;
}
void pre()
{
    fac[1]=1;for(int i=2;i<=N;i++)fac[i]=(ll)fac[i-1]*i%R;
    ine[1]=1;
    for(int i=2;i<=N;i++)
    {
        if(!mark[i])pri[++cnt]=i,ine[i]=getine(i);
        for(int j=1;pri[j]*i<=N&&j<=cnt;j++)
        {
            mark[pri[j]*i]=1;
            //ine[pri[j]*i]=(ll)ine[pri[j]]*ine[i]%R;
            if(i%pri[j]==0)break;
        }
    }
    ans[1]=1;
    for(int i=2;i<=N;i++)
    {
        ans[i]=ans[i-1];
        if(!mark[i])ans[i]=(ll)ans[i]*(i-1)%R*ine[i]%R;
    }
}
int main()
{
    T=read();R=read();
    pre();
    while(T--)
    {
        n=read();m=read();
        printf("%d\n",(ll)fac[n]*ans[m]%R);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值