方法:可并堆
解析:
来二中的第几天来着忘记了,讲了可并堆,于是去找裸题来刷。
对于合并操作,如果有一个为空则根为另一个。
然后我们不妨假设x键值小于y。
那么由于左偏树的左右子树同为左偏树,所以整个过程就形成了个递归
即把x的右子树再与y为根的子树合并。
合并后维护左偏,即保证NPL的左比右大。
之后再更新根节点的NPL。
其实以上就是合并的全过程,只是叙述一遍加深记忆而已。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 1000010
using namespace std;
int ch[N][2],h[N],key[N],fa[N];
bool col[N];
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
int merge(int x,int y)
{
if(!x)return y;
if(!y)return x;
if(key[y]<key[x])swap(x,y);
ch[x][1]=merge(ch[x][1],y);
if(h[ch[x][1]]>h[ch[x][0]])swap(ch[x][0],ch[x][1]);
if(!h[ch[x][1]])h[x]=0;
else h[x]=h[ch[x][1]]+1;
return x;
}
int n,q;
char s[5];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&key[i]);
for(int i=1;i<=n;i++)fa[i]=i;
h[0]=-1;
scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%s",s);
if(s[0]=='M')
{
int x,y;
scanf("%d%d",&x,&y);
if(col[x]||col[y])continue;
int fx=find(x),fy=find(y);
if(fx!=fy)
{
int t=merge(fx,fy);
fa[fx]=t,fa[fy]=t;
}
}else
{
int x;
scanf("%d",&x);
if(col[x])printf("%d\n",0);
else
{
int fx=find(x);
col[fx]=1;
printf("%d\n",key[fx]);
fa[fx]=merge(ch[fx][0],ch[fx][1]);
fa[fa[fx]]=fa[fx];
}
}
}
}