BZOJ 3545 [ONTAK2010]Peaks Treap启发式合并

本文介绍了一种离线查询算法,用于解决在给定困难值限制下,从一个山峰出发能到达的最大困难值不超过指定值的第k高的山峰的问题。算法采用双指针和平衡树优化,复杂度为O(m*log^2(n))。通过并查集维护连通性,实现高效查询。
摘要由CSDN通过智能技术生成

题意:
有n座山峰。m条双向道路。
每座山峰有高度。
每条路有一个困难值。
多次询问从一个山峰出发,经过道路的最大困难值不超过x能达到的第k高的山峰。
解析:
因为允许离线,所以我们可以把所有的边按照困难值排序,再把所有的询问按照困难值排序。
然后我们就可以搞一个双指针(似乎都这么叫)的东西来搞这道题。
那么每一次,我们要查某个山峰可以到达的山峰中第k高的。
因为困难值单调,所以我们可以考虑把每一个山峰看作一个平衡树,然后每一次就是合并两棵平衡树而已。
既然这么想了,我们肯定不能暴力合并,那样复杂度爆炸。
那启发式合并能不能过呢?
复杂度O(m*log^2(n))发现可过。
所以就这样写了。
为了方便实现我们可以搞一个并查集来维护哪些山峰在一块。
代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 101000
#define M 501000
using namespace std;
int n,m,q;
int val[N];
int root[N];
int tot,tot2;
struct Line
{
    int from,to,val;
}l[M];
struct node
{
    int v,siz,l,r,rnd;
}tr[N];
struct query
{
    int v,x,k,no;
}que[M];
void pushup(int rt)
{
    tr[rt].siz=tr[tr[rt].l].siz+1+tr[tr[rt].r].siz;
}
void lturn(int &rt)
{
    int t=tr[rt].r;
    tr[rt].r=tr[t].l;
    tr[t].l=rt;
    tr[t].siz=tr[rt].siz;
    pushup(rt);
    rt=t;
}
void rturn(int &rt)
{
    int t=tr[rt].l;
    tr[rt].l=tr[t].r;
    tr[t].r=rt;
    tr[t].siz=tr[rt].siz;
    pushup(rt);
    rt=t;
}
void insert(int &rt,int v,int no)
{
    if(!rt)
    {
        rt=no;
        tr[rt].v=v,tr[rt].l=tr[rt].r=0;
        tr[rt].siz=1,tr[rt].rnd=rand();
        return;
    }
    tr[rt].siz++;
    if(v<tr[rt].v)
    {
        insert(tr[rt].l,v,no);
        if(tr[tr[rt].l].rnd<tr[rt].rnd)rturn(rt);
    }else 
    {
        insert(tr[rt].r,v,no);
        if(tr[tr[rt].r].rnd<tr[rt].rnd)lturn(rt);
    }
}
void merge(int x,int &y)
{
    if(!x)return;
    merge(tr[x].l,y);
    merge(tr[x].r,y);
    insert(y,tr[x].v,x);
}
int Query_rnk(int rt,int k)
{
    if(tr[rt].siz<k)return -1;
    if(tr[tr[rt].r].siz+1==k)return tr[rt].v;
    if(tr[tr[rt].r].siz+1>k)return Query_rnk(tr[rt].r,k);
    else return Query_rnk(tr[rt].l,k-tr[tr[rt].r].siz-1);
}
int cmp(Line a,Line b)
{
    return a.val<b.val;
}
int cmp2(query a,query b)
{
    return a.x<b.x;
}
int fa[N],ans[M];
int find(int x)
{
    if(x==fa[x])return x;
    else return fa[x]=find(fa[x]);
}
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
        scanf("%d",&val[i]),insert(root[i],val[i],i),fa[i]=i; 
    for(int i=1;i<=m;i++)
        scanf("%d%d%d",&l[i].from,&l[i].to,&l[i].val);
    for(int i=1;i<=q;i++)
        scanf("%d%d%d",&que[i].v,&que[i].x,&que[i].k),que[i].no=i;
    sort(l+1,l+m+1,cmp);
    sort(que+1,que+q+1,cmp2);
    int tmp1=1;
    for(int i=1;i<=q;i++)
    {
        while(tmp1<=m&&l[tmp1].val<=que[i].x)
        {
            int x=find(l[tmp1].from),y=find(l[tmp1].to);
            tmp1++;
            if(x==y)continue;
            if(tr[root[x]].siz>tr[root[y]].siz)swap(x,y);
            merge(root[x],root[y]);fa[x]=y;
        }
        ans[que[i].no]=Query_rnk(root[find(que[i].v)],que[i].k);
    }
    for(int i=1;i<=q;i++)printf("%d\n",ans[i]); 
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值