自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 yolov12目标检测可视化界面源码GUI-pyside6

本套系统是微智启软件工作室基于yolov12目标检测+pyside6开发的可视化界面系统,在window下pycharm或者vscode运行。对于稳定行进行了优化,可长时间运行检测内存无溢出。功能介绍默认提供官方模型,后期可以替换成自己的

2025-10-21 10:13:32 663

原创 yolov12和yolov13安装FlashAttention库

FlashAttention是一种高效的注意力机制库,由斯坦福大学开发,可加速YOLOv12/v13等模型的计算并减少显存占用。安装与否的主要区别在于:不安装时系统会使用PyTorch原生实现,兼容性更广但性能较差;安装后能显著提升速度(尤其在大模型/高分辨率任务),但仅支持NVIDIA高端显卡(RTX30/40系、A100等)且需匹配CUDA/PyTorch版本。安装前需确认硬件支持,并从GitHub下载对应环境版本的whl文件进行安装。

2025-10-21 07:54:21 527

原创 Git推送到仓库报错failed to push some refs to解决方案

Git推送失败提示需要先整合远程修改。错误显示本地与远程仓库内容不一致,解决方法有二:1)先执行git pull拉取远程更改再推送;2)使用强制推送命令git push -f origin master覆盖远程内容(需谨慎使用)。建议优先采用第一种方法保持版本同步。

2025-10-03 09:34:56 477

原创 香橙派5rk3588运行pyside6库程序报错:qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in

我在运行yolov13+pyside6项目程序的时候,报错:(yolo13) orangepi@orangepi5plus:~/yolov13$ python main.pyMatplotlib is building the font

2025-10-03 08:58:52 111

原创 jetson nano b01安装pyside6库的方法

不要直接通过pip进行安装,不然会报错。微智启软件工作室原创文章。

2025-10-02 23:39:22 502

原创 OMP: Error #15: Initializing libiomp5md.dll报错解决方案

运行代码有如下报错。

2025-10-02 11:26:05 886

原创 YOLO26:更好、更快、更小的 YOLOUltralytics最新发布

9 月 25 日,在伦敦举行的年度混合盛会YOLO Vision 2025(YV25)上,公司创始人兼首席执行官格伦-乔彻(Glenn Jocher)正式宣布了 Ultralytics YOLO 模型系列的最新突破--Ultralytics YOLO26!我们的新型计算机视觉模型 YOLO26 可以分析和解释图像和视频,其精简的架构兼顾了速度、准确性和易部署性。这是yolo新版本。

2025-09-28 08:48:16 1742

原创 ImportError: DLL load failed while importing _imaging: 找不到指定的模块。

报错信息:ImportError: DLL load failed while importing _imaging: 找不到指定的模块。ModuleNotFoundError: No module named 'PIL'UserWarni

2025-09-25 21:48:24 434

原创 yolov5运行串口报错AttributeError: module ‘serial‘ has no attribute ‘Serial‘

最近在乌班图运行yolov5串口报错:Traceback (most recent call last): File "/home/gan/Desktop/Python/final.py", line 15, in <module

2025-09-25 21:45:58 501

原创 yolov12报错AttributeError: ‘AAttn‘ object has no attribute ‘qk‘. Did you mean: ‘qkv‘?

报错描述:Traceback (most recent call last): File "G:\down\yolov12-main\yolov12-main\detect.py", line 14, in <module&gt

2025-09-20 07:45:58 176

原创 No module named ‘ultralytics.yolo‘

最近在运行yolov8的时候报错Traceback (most recent call last):  File "predict.py", line 13, in <module>    fr

2025-09-20 07:42:27 250

原创 yolov9目标检测报错AttributeError: ‘list‘ object has no attribute ‘device‘

摘要:微智启工作室发现yolov9运行detect.py时出现"AttributeError: 'list' object has no attribute 'device'"报错,问题源于utils/general.py中900行左右的非极大值抑制(NMS)代码处理不当。该错误是由于直接处理包含两个数据的列表导致,而yolov5版本因只处理单个数据不会报错。提供代码修改方案:需要遍历数据进行处理而非直接设置。文章注明该解决方案适用于2024年2月23日版本,后续官方可能修复此问题,建议

2025-09-20 07:39:31 430

原创 yolov13flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl安装

在yolov13目标检测中,如果我们在安装环境时,不安装flash_attn也是能运行检测的,但是会有如下输出:FlashAttention is not available on this device. Using scaled_dot

2025-09-19 21:07:30 217

原创 UG NX安装时许可证服务器端口号的一些说明

不同版本的NX可能会使用不同的端口号,这主要与软件的发布年代有关,它们会有一些区别的,否则在启动的时候就会有报错:无法连接至许可证服务器系统。服务器(Imgrd)尚未启动,或SPLM_LICENSE_SERVER被设为错误的端口@主机”

2025-09-19 21:06:28 321

原创 yolov8区域入侵自定义画线检测语音警报系统-pyside6可视化界面

摘要: 微智启软件工作室开发的YOLOv8区域入侵检测警报系统,基于YOLOv8目标追踪和PySide6开发,支持Windows平台运行。系统功能包括物体计数、入侵语音警报,适用于江河危险区域、消防通道、店铺客流统计、养殖场计数等场景。支持多种输入源(离线视频、摄像头、RTSP/RTMP流),可动态调节置信度、开启语音警报及保存检测区域。提供三种结果保存模式,优化存储效率。运行需Python 3.8环境,支持GPU加速(可选)。程序提供详细注释,支持自定义模型和界面修改。视频演示和源码可通过指定链接获取。

2025-09-19 17:40:58 1487

原创 yolov5+pyside6目标检测+用户注册登录管理源码系统

摘要:微智启软件工作室基于YOLOv5-7.0开发了一套带可视化界面的目标检测系统,支持图片、视频、摄像头和文件夹检测,具备置信度/IoU调整、结果保存、进度显示等功能。系统集成MySQL8实现用户管理(增删改查),支持GPU加速和自定义模型替换。提供完整的视频/图文安装教程,包含环境配置和界面修改指南,测试账号为root/root和user/123。项目演示视频和详细文档均已发布。

2025-09-19 17:22:38 817

原创 超详细 | pycharm提交项目代码到GitHub的方法(图文)

本文介绍了使用PyCharm和Git工具提交项目到GitHub的完整流程:1)安装配置Git;2)在PyCharm中创建Git仓库并提交代码到暂存区;3)登录GitHub账号并生成token;4)在GitHub创建空仓库;5)将本地代码推送到远程仓库。重点说明了代码颜色变化、token获取保存等关键步骤,并提供了登录失败解决方案链接。

2025-09-15 06:46:42 479

原创 jetson nano编译TensorRT报错:CMAKE_CUDA_ARCHITECTURES must be non-empty if set.

摘要:Jetson Nano开发板编译TensorRT时需正确设置CUDA架构版本。Jetson Nano(Volta架构)应设为53,Jetson Orin Nano(Ampere架构)应设为80。编译前需清除之前的配置和缓存,重新设置后再编译以避免报错问题。微智启工作室原创解决方案。

2025-09-15 06:44:23 186

原创 树莓派调用摄像头显示图形窗口报错:xcb Could not load the Qt

摘要:本文提供了解决Qt插件缺失问题的多种方法:1)安装pyside6和pyqt5库;2)安装xcb等Qt插件;3)设置QT_QPA_PLATFORM环境变量为offscreen;4)使用opencv-python-headless版本;5)重新安装OpenCV和Qt库。建议将环境变量设置写入.bashrc或.profile文件,最后可能需要重启开发板使更改生效。这些解决方案适用于没有显示输出设备时的Qt相关错误。

2025-09-14 10:48:36 210

原创 3分钟在本地快速部署deepseek大模型

文章摘要:本文介绍了三种本地部署AI模型的方法。1.Ollama部署:下载安装后通过命令行运行模型,支持自定义训练和私有化部署;2.PageAssist浏览器插件部署:需配合Ollama使用,提供便捷的网页交互界面;3.LMStudio部署:提供更多使用方式。文章还提供了显存不足时的解决方案,建议根据设备性能选择合适容量的模型。这些方法适用于需要保护商业机密或追求高度自定义的场景。

2025-09-14 10:42:24 872

原创 使用innosetup制作电脑软件exe安装包程序的详细步骤

本文详细介绍了Inno Setup安装软件的下载与配置步骤。首先从官网下载安装包并运行,选择非C盘安装位置。安装过程中可创建桌面快捷方式并关联.iss文件。安装完成后新建项目,填写软件名称、版本号等基本信息。接着配置安装路径,添加主程序exe文件及其他相关文件/文件夹。后续步骤包括设置开始菜单快捷方式、文档条款、管理员权限等选项,最后生成安装脚本。整个过程涵盖了从下载到生成安装包的全部关键配置环节。

2025-09-13 23:35:32 436

原创 yolov5目标检测可视化源码-精简版pyside6

该项目由微智启软件工作室基于yolov5-7.0目标检测,结合pyside6库开发的可视化目标检测系统。项目的尺寸是995x543固定像素,提供了ui源文件,可以自行修改界面颜色样式。功能介绍:默认提供官方yolov5s.pt模型,检测80

2025-09-13 14:23:31 253

原创 基于yolov8草莓叶片病虫害UI界面+python代码可视化检测系统

背景:草莓作为关键的水果品种之一,在其栽培过程中面临多种病虫害威胁,比如角斑病、炭疽病、花枯病、灰霉病、叶斑病、果实白粉病、叶片白粉病、蚜虫等,这些问题直接挑战着草莓的质量与产量。创建一个专门针对草莓叶片病虫害的数据集对于推进深度学习技术在

2025-09-13 14:18:10 712

原创 基于yolov8坑洼路面检测UI界面+python代码目标检测系统

前言随着城市化进程的不断推进,道路作为城市基础设施的重要组成部分,其健康状况直接关系到城市的运行效率和居民的出行安全。坑洼路面作为道路病害的一种常见形式,不仅影响行车舒适性,更可能导致交通事故,增加维护成本。因此,及时准确地检测并修复坑洼路

2025-09-13 14:14:58 652

原创 树莓派安装pyqt5库的方法——微智启亲测有效!

问题描述:我是python3.8,通过miniconda安装yolov8环境的。如果直接在树莓派安装pyqt5会有如下的编译报错,无法安装以下安装命令试过了均无效:pip install pyqt5conda install pyqt5

2025-09-13 14:08:50 282

原创 香橙派5使用rknn提示报错Invalid RKNN model version 6

香橙派5调用RKNN模型报错解决方案:需确保转换工具、模型库和运行库版本一致。首先从RKNN-Toolkit2官网下载同版本源码,找到librknnrt.so文件。使用sudo命令将该文件替换到/usr/lib64/目录下(注意修改文件路径)。若替换失败可能因权限问题,建议使用命令行操作而非直接粘贴。操作完成后可能需要重启开发板。相关代码库包括修改版YOLOv8、RKNN Model Zoo和RKNN-Toolkit2,需保持版本匹配。该方案由微智启软件工作室提供。

2025-09-13 14:05:33 443

原创 打开labelimg标注闪退的解决方案

问题描述:打开labelimg查看图片或者标注图片,labelimg闪退解决方案:在保存标签的文件夹,classes.txt完善标签的名称数量

2025-09-13 12:31:16 281

原创 yolov13可视化界面源码GUI目标检测系统

本系统基于YOLOv13目标检测算法和PySide6开发,提供可视化GUI界面,支持图片、视频、摄像头和文件夹批量检测功能。系统优化了稳定性,可长时间运行无内存溢出。主要功能包括:实时显示检测结果、统计检测数量与耗时、动态调整参数、分类统计检测对象等。环境配置需Python 3.11,提供CPU/GPU版本安装指南。项目采用多线程架构,检测结果保存在runs文件夹,支持界面样式自定义。系统已申请版权,禁止商用转载。

2025-09-12 10:58:03 954

原创 yolov9&pyside6 GUI实现目标检测系统v1.0

微智启软件工作室开发了基于YOLOv9目标检测和PySide6可视化界面的检测系统。该系统支持单图/多图/视频/摄像头检测,可动态调整置信度和IOU值,并显示检测结果统计。项目提供详细的环境配置教程(Anaconda+PyCharm),支持CPU/GPU版本安装,并附带界面样式修改方法。系统采用YOLOv9-c模型,可检测80类物体,用户也可通过官方源码训练自定义权重。项目包含检测逻辑处理类(⑥)和图形界面类(⑦),通过信号槽机制实现数据交互。源码和视频演示可通过指定链接获取。

2025-09-12 10:51:00 336

原创 超详细的Anaconda3安装图文教程

本文介绍了Anaconda的下载安装与镜像源配置方法。首先从清华镜像站下载指定版本安装包,完成安装后修改默认下载源为国内镜像以提升下载速度。具体步骤包括:1)通过conda命令生成配置文件;2)编辑.condarc文件替换为清华源配置。文中还提供了清华、北外、北交等多个国内镜像源的完整配置模板,用户可根据需求选择。该教程可帮助用户快速完成Anaconda环境搭建并优化包下载体验。

2025-09-12 08:13:30 772

原创 yolo目标检测中常见改进的方法和底层逻辑

YOLOv11改进方法主要围绕骨干网络、颈部网络、检测头、损失函数、训练策略等模块进行优化。骨干网络改进包括替换轻量/高性能网络、引入注意力机制;颈部网络优化特征融合结构和引入Transformer;检测头改进锚框机制和多任务学习;损失函数优化使用FocalLoss和IoU系列损失;训练策略采用Mosaic增强和动态学习率;后处理改进NMS算法;硬件优化通过量化和剪枝提升效率。这些方法通过增强特征提取、优化信息融合、提高训练效率和降低部署成本来全面提升检测性能,需根据实际场景在精度和速度间权衡选择。

2025-09-12 08:08:13 1116

原创 YOLO数据集格式转换工具v1.0-微智启软件工作室

摘要:微智启软件工作室开发的YOLO数据集格式转换工具(v1.0.0)支持LabelImg(XML)和LabelMe(JSON)标注数据与YOLO(TXT)格式的互转,包含五大功能:XML转TXT、TXT转XML、JSON转TXT(分割)、数据集划分(可调比例)及格式说明。软件免安装,支持双机使用,配套视频教程,用户可通过指定渠道获取该工具。

2025-09-12 08:04:15 255

原创 yolo数据集增强扩充工具目标检测-微智启工作室v1.2.1

支持6种增强方式(噪声/亮度/旋转/裁剪/平移/镜像),最新v1.2.1版本支持自动检测标签文件并划分训练/验证集(8:2比例)。该工具无需安装环境,支持txt/xml格式输入,每张图片可随机增强1-6次,有效解决数据集不足问题(如案例中105张增强至700+张)。提供视频教程及错误修复服务,需注意数据集需符合labelimg标注格式要求。

2025-09-11 16:45:32 1709

原创 基于yolov5(7.0版)&pyside6 GUI实现目标分割系统v1.0

微智启软件工作室开发的YOLOv5-7.0目标分割可视化系统,基于PySide6实现Windows平台下的高效检测。系统支持图片、视频、摄像头及文件夹批量检测,可实时调节置信度与IOU阈值,并显示检测结果统计。具备GPU加速、检测暂停、进度显示及耗时统计功能,支持模型替换实现自定义检测。项目采用多线程处理检测逻辑,通过信号机制实现界面交互。提供详细的安装教程,支持CPU/GPU两种运行模式,用户可自定义界面样式。系统源码需私信获取,配套完整的运行指南和视频教程。

2025-09-11 11:02:38 300

原创 基于yolov5(7.0版)&pyside6 GUI实现目标检测系统v1.0

微智启软件工作室基于YOLOv5-7.0开发的目标检测系统,集成了PySide6可视化界面,支持图片、视频、摄像头和批量图片检测。系统具备实时调整参数、结果显示对比、进度追踪、GPU加速等功能,支持自定义模型替换。项目采用多线程处理检测任务,通过信号机制实现数据交互。提供详细的安装指南,包括环境配置(CPU/GPU版本)和界面样式修改方法,用户可通过Anaconda创建独立环境并安装依赖后运行主程序。

2025-09-11 10:30:49 406

原创 yolov8目标检测可视化界面源码系统-带登录注册用户管理功能

本文介绍了一个基于YOLOv8目标检测算法的可视化界面系统,支持图像、视频及摄像头检测。系统采用PySide6开发界面,使用SQLite3数据库管理用户登录注册功能,包含管理员账号管理模块。项目提供完整的源码和UI文件,支持替换自定义训练权重(需基于官方模型)。系统运行时自动保存配置至config.json文件,默认包含YOLOv8官方80类检测模型。运行环境需Windows10/11+Python3.8+Anaconda3,详细安装步骤包含环境配置、依赖安装和界面修改方法。默认管理员账号为admin/ad

2025-09-11 10:18:08 654

原创 yolov10目标检测+pyside6可视化界面源码系统GUI

微智启工作室开发的YOLOv10目标检测可视化系统基于PySide6框架,支持Windows平台运行。该系统具备实时检测显示、参数动态调整、多数据源支持(图片/视频/摄像头/批量图片)等功能,优化了内存管理确保稳定运行。提供官方预训练模型,支持自定义模型替换,并附带UI源文件便于界面样式修改。系统包含检测进度显示、结果统计、暂停/终止等实用功能,检测结果默认保存至runs文件夹。运行需配置Python环境(支持CPU/GPU版本),界面尺寸为1500×800固定分辨率。该系统代码注释详尽,便于二次开发,适合

2025-09-11 10:10:41 519

原创 X-AnyLabeling-半自动ai标注软件使用介绍

X-AnyLabeling是一款集成深度学习的AI标注工具,支持目标检测、图像分割、OCR等多种任务。提供CPU/GPU版本,需Python3.11环境。操作流程包括:安装依赖库、启动软件、选择标注类型(矩形/多边形),并支持AI辅助标注(自动下载模型至C盘)。标注结果可导出为YOLO格式,需配套classes.txt文件。适用于自动驾驶、医疗影像等领域,支持自定义模型添加。

2025-09-11 10:06:37 565

原创 yolov12报错AttributeError: ‘AAttn‘ object has no attribute ‘qk‘. Did you mean: ‘qkv‘?

报错描述:Traceback (most recent call last): File "G:\down\yolov12-main\yolov12-main\detect.py", line 14, in <module&gt

2025-09-11 10:00:39 249

原创 亲测有效!RTX5070安装pytorch报错sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90解决方案

摘要:RTX5070显卡安装PyTorch时出现不兼容问题,原因是预编译版本不支持sm_120计算能力。解决方案是将Python版本调整为3.10,并安装指定PyTorch版本(含CUDA12.8支持)。作者亲测该方法有效,同时批评网上教程大多未经实际验证,导致时间浪费。该问题源于新显卡架构需要更新的CUDA和PyTorch版本支持。

2025-09-11 09:56:32 353

YOLO数据集工具包-微智启软件工作室原创作品

YOLO数据集工具包是由微智启软件开发,主要用于处理目标检测数据集。现有【数据集划分、图片压缩、图片和标签名称重命名、txt标签信息数据获取】功能。

2025-09-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除