数列的三次方求前缀和(矩阵快速幂)

  • 难得一次推麻烦点的矩阵,矩阵快速幂以后要有信心推下去,暴力推就行了

  • 第一次用Markdown完整的写完了一篇题解,这数学公式可真要命


题目描述:

  • 一个数列 a n {a_n} an,满足 a n = x ∗ a n − 1 + y ∗ a n − 2 a_n = x * a_{n - 1} + y * a_{n - 2} an=xan1+yan2,求 ∑ i = 1 n a i 3 \sum^{n}_{i = 1} {a_i^3} i=1nai3 答案对998244353取模。

输入

  • 第一行一个整数T,即数据组数。
  • 下面T行,每行5个整数,即n,a1,a2,x,y,含义如上。

输出

  • 共T行,每行1个整数,即每组数据的答案。

样例输入

3
3 0 2 0 0
3 1 2 0 1
3 1 0 0 1

样例输出

8
10
2

提示

  • 对于100%的数据, 1 ≤ T ≤ 1 0 4 , 1 ≤ n ≤ 1 0 18 , 0 ≤ a 1 , a 2 , x , y ≤ 998244352 1≤T≤10^4,1≤n≤10^{18},0≤a_1,a_2,x,y≤998244352 1T1041n10180a1a2xy998244352

题解:

就暴力拆开三次方 a n 3 = x 3 a n − 1 3 + 3 x 2 y a n − 1 2 a n − 2 + 3 x y 2 a n − 1 a n − 2 2 + y 3 a n − 2 3 a_n^3 = x^3 a_{n-1}^3 + 3 x^2 y a_{n-1}^2 a_{n-2} + 3 x y ^ 2 a_{n - 1} a_{n - 2}^2 + y^3 a_{n-2}^3 an3=x3an13+3x2yan12an2+3xy2an1an22+y3an23

然后用常用推矩阵的思路直接上4阶基矩阵

b a s e = ( x 3 3 x 2 y 3 x y 2 y 3 x 2 2 x y y 2 0 x y 0 0 1 0 0 0 ) (1) base=\begin{pmatrix}x^3 & 3 x^2 y & 3 x y^2 & y^3\\x^2 & 2 x y & y^2 & 0\\x & y & 0 & 0\\1 & 0 & 0 & 0\end{pmatrix}\tag{1} base=x3x2x13x2y2xyy03xy2y200y3000(1)


( a n 3 a n 2 a n − 1 a n a n − 1 2 a n − 1 3 ) = ( x 3 3 x 2 y 3 x y 2 y 3 x 2 2 x y y 2 0 x y 0 0 1 0 0 0 ) ( a n − 1 3 a n − 1 2 a n − 2 a n − 1 a n − 2 2 a n − 2 3 ) (2) \begin{pmatrix}a_n^3 \\a_n^2 a_{n-1} \\a_n a_{n-1}^2 \\a_{n-1}^3\end{pmatrix}=\begin{pmatrix}x^3 & 3 x^2 y & 3 x y^2 & y^3\\x^2 & 2 x y & y^2 & 0\\x & y & 0 & 0\\1 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}a_{n-1}^3 \\a_{n-1}^2 a_{n-2} \\a_{n-1} a_{n-2}^2 \\a_{n-2}^3\end{pmatrix}\tag{2} an3an2an1anan12an13=x3x2x13x2y2xyy03xy2y200y3000an13an12an2an1an22an23(2)

( a n 3 a n 2 a n − 1 a n a n − 1 2 a n − 1 3 ) = ( x 3 3 x 2 y 3 x y 2 y 3 x 2 2 x y y 2 0 x y 0 0 1 0 0 0 ) n − 2 ( a 2 3 a 2 2 a 1 a 2 a 1 2 a 1 3 ) (3) \begin{pmatrix}a_n^3 \\a_n^2 a_{n-1} \\a_n a_{n-1}^2 \\a_{n-1}^3\end{pmatrix}=\begin{pmatrix}x^3 & 3 x^2 y & 3 x y^2 & y^3\\x^2 & 2 x y & y^2 & 0\\x & y & 0 & 0\\1 & 0 & 0 & 0\end{pmatrix}^{n - 2}\begin{pmatrix}a_2^3 \\a_2^2 a_1 \\a_2 a_1^2 \\a_1^3\end{pmatrix}\tag{3} an3an2an1anan12an13=x3x2x13x2y2xyy03xy2y200y3000n2a23a22a1a2a12a13(3)

那么这个 a n 3 a_n^3 an3 就可以顺利用矩阵快速幂推出来了

题目求的是 ∑ i = 1 n a i 3 \sum^{n}_{i = 1} {a_i^3} i=1nai3,令 S n = ∑ i = 1 n a i 3 S_n = \sum^{n}_{i = 1} {a_i^3} Sn=i=1nai3

那么对基矩阵增加一行一列即可

b a s e = ( 1 x 3 3 x 2 y 3 x y 2 y 3 0 x 3 3 x 2 y 3 x y 2 y 3 0 x 2 2 x y y 2 0 0 x y 0 0 0 1 0 0 0 ) (4) base=\begin{pmatrix}1 & x^3 & 3 x^2 y & 3 x y^2 & y^3 \\0 & x^3 & 3 x^2 y & 3 x y^2 & y^3 \\0 & x^2 & 2 x y & y^2 & 0 \\0 & x & y & 0 & 0 \\0 & 1 & 0 & 0 & 0\end{pmatrix}\tag{4} base=10000x3x3x2x13x2y3x2y2xyy03xy23xy2y200y3y3000(4)


( S n a n 3 a n 2 a n − 1 a n a n − 1 2 a n − 1 3 ) = ( 1 x 3 3 x 2 y 3 x y 2 y 3 0 x 3 3 x 2 y 3 x y 2 y 3 0 x 2 2 x y y 2 0 0 x y 0 0 0 1 0 0 0 ) ( S n − 1 a n − 1 3 a n − 1 2 a n − 2 a n − 1 a n − 2 2 a n − 2 3 ) (5) \begin{pmatrix}{S}_n \\a_n^3 \\a_n^2 a_{n-1} \\a_n a_{n-1}^2 \\a_{n-1}^3\end{pmatrix}= \begin{pmatrix}1 & x^3 & 3 x^2 y & 3 x y^2 & y^3 \\0 & x^3 & 3 x^2 y & 3 x y^2 & y^3\\0 & x^2 & 2 x y & y^2 & 0\\0 & x & y & 0 & 0\\0 & 1 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}S_{n-1} \\a_{n-1}^3 \\a_{n-1}^2 a_{n-2} \\a_{n-1} a_{n-2}^2 \\a_{n-2}^3\end{pmatrix}\tag{5} Snan3an2an1anan12an13=10000x3x3x2x13x2y3x2y2xyy03xy23xy2y200y3y3000Sn1an13an12an2an1an22an23(5)

( S n a n 3 a n 2 a n − 1 a n a n − 1 2 a n − 1 3 ) = ( 1 x 3 3 x 2 y 3 x y 2 y 3 0 x 3 3 x 2 y 3 x y 2 y 3 0 x 2 2 x y y 2 0 0 x y 0 0 0 1 0 0 0 ) n − 2 ( S 2 a 2 3 a 2 2 a 1 a 2 a 1 2 a 1 3 ) (6) \begin{pmatrix}{S}_n \\a_n^3 \\a_n^2 a_{n-1} \\a_n a_{n-1}^2 \\a_{n-1}^3\end{pmatrix}= \begin{pmatrix}1 & x^3 & 3 x^2 y & 3 x y^2 & y^3 \\0 & x^3 & 3 x^2 y & 3 x y^2 & y^3\\0 & x^2 & 2 x y & y^2 & 0\\0 & x & y & 0 & 0\\0 & 1 & 0 & 0 & 0\end{pmatrix}^{n - 2}\begin{pmatrix}S_2 \\a_2^3 \\a_2^2 a_1 \\a_2 a_1^2 \\a_1^3\end{pmatrix}\tag{6} Snan3an2an1anan12an13=10000x3x3x2x13x2y3x2y2xyy03xy23xy2y200y3y3000n2S2a23a22a1a2a12a13(6)

#pragma GCC optimize(3, "Ofast", "inline")
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;

typedef unsigned long long uLL;

#define REP(i, a, b) for(register int i = (a), i##_end_ = (b); i <= i##_end_; ++ i)
#define DREP(i, a, b) for(register int i = (a), i##_end_ = (b); i >= i##_end_; -- i)
#define EREP(i, a) for(register int i = (be[a]); i != -1; i = nxt[i])
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define mem(a, b) memset((a), b, sizeof(a))

template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
template <class T>
T read(T sum = 0, T fg = 0)
{
	char c = getchar();
	while(c < '0' || c > '9') { fg |= c == '-'; c = getchar(); }
	while(c >= '0' && c <= '9') { sum = sum * 10 + c - '0'; c = getchar(); }
	return fg ? -sum : sum;
}

const int inf = 1e9;

const LL INF = 1e17;

const int Size = 1000010;

const LL mod = 998244353;

struct Matrix
{
	LL matrix[6][6];
	int lenx, leny;

	Matrix()
	{
		lenx = 5; leny = 5;
		mem(matrix, 0);
	}

	void base()
	{
		REP(i, 1, 5) matrix[i][i] = 1;
	}

	friend Matrix operator * (Matrix a, Matrix b)
	{
		Matrix res;
		res.lenx = a.lenx; res.leny = b.leny;
		REP(i, 1, res.lenx) REP(j, 1, res.leny) REP(k, 1, a.leny)
		{
			(res.matrix[i][j] += a.matrix[i][k] * b.matrix[k][j] % mod) %= mod;
		}
		return res;
	}
};

Matrix qpow(Matrix a, LL N)
{
	Matrix ans; ans.base();
	while(N)
	{
		if(N & 1LL) ans = ans * a;
		a = a * a;
		N >>= 1LL;
	}
	return ans;
}

LL calc(LL x, int k)
{
	LL ans = 1LL;
	while(k--) ans = ans * x % mod;
	return ans % mod;
}

void solve()
{
	LL n = read<LL>();
	LL a1 = read<LL>() % mod, a2 = read<LL>() % mod;
	LL x = read<LL>() % mod, y = read<LL>() % mod;

	if(n == 1)
	{
		printf("%lld\n", calc(a1, 3));
		return;
	}
	if(n == 2)
	{
		printf("%lld\n", (calc(a1, 3) + calc(a2, 3)) % mod);
		return;
	}

	Matrix a, b;

	a.matrix[1][1] = 1;
	a.matrix[1][2] = calc(x, 3);
	a.matrix[1][3] = 3 * calc(x, 2) % mod * y % mod;
	a.matrix[1][4] = 3 * x % mod * calc(y, 2) % mod;
	a.matrix[1][5] = calc(y, 3);

	a.matrix[2][1] = 0;
	a.matrix[2][2] = calc(x, 3);
	a.matrix[2][3] = 3 * calc(x, 2) % mod * y % mod;
	a.matrix[2][4] = 3 * x % mod * calc(y, 2) % mod;
	a.matrix[2][5] = calc(y, 3);

	a.matrix[3][1] = 0;
	a.matrix[3][2] = calc(x, 2);
	a.matrix[3][3] = 2 * x % mod * y % mod;
	a.matrix[3][4] = calc(y, 2);
	a.matrix[3][5] = 0;

	a.matrix[4][1] = 0;
	a.matrix[4][2] = x;
	a.matrix[4][3] = y;
	a.matrix[4][4] = 0;
	a.matrix[4][5] = 0;

	a.matrix[5][1] = 0;
	a.matrix[5][2] = 1;
	a.matrix[5][3] = 0;
	a.matrix[5][4] = 0;
	a.matrix[5][5] = 0;

	Matrix ans = qpow(a, n - 2);
	b.lenx = 5; b.leny = 1;
	b.matrix[1][1] = (calc(a1, 3) + calc(a2, 3)) % mod;
	b.matrix[2][1] = calc(a2, 3);
	b.matrix[3][1] = calc(a2, 2) * a1 % mod;
	b.matrix[4][1] = a2 * calc(a1, 2) % mod;
	b.matrix[5][1] = calc(a1, 3);

	ans = ans * b;
	printf("%lld\n", ans.matrix[1][1]);
}

int main()
{
#ifndef ONLINE_JUDGE
	freopen("input.in", "r", stdin);
	freopen("output.out", "w", stdout);
#endif
	int Case = read<int>();
	while(Case--) solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值