import numpy as np
- np.random.choice
参数意思分别 是从a 中以概率P,随机选择3个, p没有指定的时候相当于是一致的分布
a1 = np.random.choice(a=5, size=3,
replace=False, p=None)
非一致的分布,会以多少的概率提出来
a2 = np.random.choice(a=5, size=3,
replace=False, p=[0.2, 0.1, 0.3, 0.4, 0.0])
replacement 代表的意思是抽样之后还放不放回去,如果是False的话,那么出来的三个数都不一样,如果是True的话, 有可能会出现重复的,因为前面的抽的放回去了。
- np.r_ np.c_
np.r_是按列连接两个矩阵,就是把两矩阵上下相连,要求列数相等,类似于pandas中的concat()
np.c_是按行连接两个矩阵,就是把两矩阵左右相连,要求行数相等,类似于pandas中的merge()
import numpy as np
a = np.array([1, 2,3])
b = np.array([4, 5, 6])
c = np.c_[a,b]
print(np.r_[a,b])
print(c)
print(np.c_[c,a])
[1 2 3 4 5 6]
[[1 4]
[2 5]
[3 6]]
[[1 4 1]
[2 5 2]
[3 6 3]]