python numpy 模块

本文详细解析了NumPy库中的随机抽样函数np.random.choice的使用方法,包括参数含义及其如何进行一致与非一致分布的随机选择。同时,介绍了np.r_和np.c_函数用于矩阵按列和按行连接的操作方式,通过实例展示了这些函数的具体应用。
摘要由CSDN通过智能技术生成

import numpy as np

  • np.random.choice

参数意思分别 是从a 中以概率P,随机选择3个, p没有指定的时候相当于是一致的分布

a1 = np.random.choice(a=5, size=3,
replace=False, p=None)

非一致的分布,会以多少的概率提出来

a2 = np.random.choice(a=5, size=3,
replace=False, p=[0.2, 0.1, 0.3, 0.4, 0.0])

replacement 代表的意思是抽样之后还放不放回去,如果是False的话,那么出来的三个数都不一样,如果是True的话, 有可能会出现重复的,因为前面的抽的放回去了。

  • np.r_ np.c_

np.r_是按列连接两个矩阵,就是把两矩阵上下相连,要求列数相等,类似于pandas中的concat()

np.c_是按行连接两个矩阵,就是把两矩阵左右相连,要求行数相等,类似于pandas中的merge()

import numpy as np 
a = np.array([1, 2,3])
b = np.array([4, 5, 6])
c = np.c_[a,b] 
print(np.r_[a,b])
print(c)
print(np.c_[c,a])
[1 2 3 4 5 6] 

[[1 4]
 [2 5]
 [3 6]]


[[1 4 1]
 [2 5 2]
 [3 6 3]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值